-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy path2022_02_22_world_freedom_index.Rmd
268 lines (221 loc) · 7.01 KB
/
2022_02_22_world_freedom_index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
title: "TidyTemplate"
date: 2022-02-22
output: html_output
editor_options:
chunk_output_type: console
---
# TidyTuesday
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
library(tidytuesdayR)
library(scales)
theme_set(theme_light())
```
# Load the weekly Data
Dowload the weekly data and make available in the `tt` object.
```{r Load}
freedom <- tt_load("2022-02-22")$freedom %>%
janitor::clean_names() %>%
rename(civil_liberties = cl,
political_rights = pr) %>%
mutate(country_code = countrycode::countrycode(country, "country.name", "iso2c"))
freedom %>%
count(year, sort = TRUE) %>%
arrange(desc(year))
freedom %>%
distinct(country, region_name)
```
Look just at 2020
```{r}
summarize_freedom <- function(tbl) {
tbl %>%
summarize(n_countries = n(),
avg_civil_liberties = mean(civil_liberties),
avg_political_rights = mean(political_rights),
pct_free = mean(status == "F"),
.groups = "drop") %>%
arrange(desc(n_countries))
}
```
```{r}
by_region <- freedom %>%
filter(year == 2020) %>%
group_by(region_name) %>%
summarize_freedom()
by_region %>%
ggplot(aes(avg_civil_liberties, avg_political_rights)) +
geom_abline(color = "red") +
geom_point(aes(size = n_countries)) +
geom_text(aes(label = region_name), vjust = 1, hjust = 1) +
expand_limits(x = 0, y = 0, size = 0)
freedom %>%
ggplot(aes(avg_civil_liberties, avg_political_rights)) +
geom_point()
```
```{r}
freedom %>%
filter(year == 2020) %>%
ggplot(aes(civil_liberties, political_rights)) +
geom_abline(color = "red") +
geom_jitter(height = .2, width = .2) +
# geom_text(aes(label = region_name), vjust = 1, hjust = 1) +
expand_limits(x = 0, y = 0, size = 0)
freedom %>%
summarize(sd(civil_liberties),
sd(political_rights))
freedom %>%
filter(year == 2020) %>%
gather(metric, value, civil_liberties, political_rights) %>%
mutate(metric = str_to_title(str_replace_all(metric, "_", " ")),
region_name = fct_reorder(region_name, value)) %>%
count(region_name, metric, value) %>%
ggplot(aes(value, n)) +
geom_col() +
facet_grid(region_name ~ metric) +
labs(x = "World Freedom Index rating",
y = "# of countries",
title = "Distribution of World Freedom Index by region in 2020")
```
civil_liberties is a scale of 1-7
```{r}
freedom_gathered <- freedom %>%
gather(metric, value, civil_liberties, political_rights) %>%
mutate(metric = str_to_title(str_replace_all(metric, "_", " ")),
region_name = fct_reorder(region_name, value))
overall <- freedom_gathered %>%
group_by(year, metric) %>%
summarize(avg_rating = mean(value))
freedom_gathered %>%
group_by(year, region_name, metric) %>%
summarize(avg_rating = mean(value)) %>%
ggplot(aes(year, avg_rating)) +
geom_line(aes(color = region_name)) +
geom_line(data = overall, size = 3) +
facet_wrap(~ metric) +
expand_limits(y = 1) +
scale_y_reverse(breaks = seq(1, 7)) +
scale_color_discrete(guide = guide_legend(reverse = TRUE)) +
labs(x = "Year",
y = "World Freedom Index rating",
title = "World Freedom Index rating over time by region",
color = "Region",
subtitle = "Black line shows overall trend")
```
```{r}
freedom %>%
ggplot(aes(civil_liberties)) +
geom_histogram()
```
### Worldbank data
```{r}
library(WDI)
library(countrycode)
gdp_percap <- WDI(indicator = "NY.GDP.PCAP.CD",
extra = TRUE,
start = 1995,
end = 2020) %>%
as_tibble()
freedom_joined <- freedom_gathered %>%
inner_join(gdp_percap, by = c(country_code = "iso2c", "year"),
suffix = c("", "_wdi")) %>%
mutate(income = fct_relevel(income, c("Low income", "Lower middle income", "Upper middle income")))
freedom_joined %>%
filter(income != "Not classified") %>%
group_by(metric, income, year) %>%
summarize(avg_rating = mean(value)) %>%
ggplot(aes(year, avg_rating)) +
geom_line(aes(color = income)) +
geom_line(data = overall, size = 3) +
facet_wrap(~ metric) +
expand_limits(y = 1) +
scale_y_reverse(breaks = seq(1, 7)) +
scale_color_discrete(guide = guide_legend(reverse = TRUE)) +
labs(x = "Year",
y = "World Freedom Index rating",
title = "World Freedom Index rating over time by region",
color = "Worldbank Income",
subtitle = "Black line shows overall trend")
freedom_joined %>%
filter(year == 2020) %>%
ggplot(aes(NY.GDP.PCAP.CD, value)) +
geom_point() +
geom_jitter(height = .2, width = 0) +
facet_wrap(~ metric) +
scale_x_log10()
```
```{r}
library(broom)
civil_liberties_2020 <- freedom_joined %>%
filter(metric == "Civil Liberties",
year == 2020,
!is.na(NY.GDP.PCAP.CD))
lin_mod <- civil_liberties_2020 %>%
lm(value ~ region_name + log2(NY.GDP.PCAP.CD), data = .)
library(ggrepel)
lin_mod %>%
augment(data = civil_liberties_2020) %>%
select(country, NY.GDP.PCAP.CD, region_name, income, value, .fitted, .resid) %>%
arrange(desc(abs(.resid))) %>%
head(20) %>%
ggplot(aes(.fitted, value)) +
geom_point() +
geom_text_repel(aes(label = country)) +
geom_abline(color = "red") +
labs(x = "Expected freedom index based on region + income",
y = "Actual freedom index",
title = "What are the largest outliers?") +
expand_limits(x = 1, y = 1)
```
```{r}
library(fuzzyjoin)
freedom_2020 <- freedom_joined %>%
filter(year == 2020)
world_map_freedom_2020 <- map_data("world") %>%
as_tibble() %>%
regex_left_join(maps::iso3166, c(region = "mapname")) %>%
left_join(freedom_2020 %>% select(-region), by = c(a2 = "country_code")) %>%
filter(region != "Antarctica")
world_map_freedom_2020 %>%
filter(metric == "Civil Liberties") %>%
ggplot(aes(long, lat, group = group)) +
geom_polygon(aes(fill = value)) +
coord_map(xlim = c(-180, 180)) +
scale_fill_gradient2(low = "blue",
high = "red",
midpoint = 3.5,
guide = guide_legend(reverse = TRUE)) +
ggthemes::theme_map() +
labs(fill = "Civil Liberties Rating",
title = "World Freedom Index: Civil Liberties",
subtitle = "In 2020")
```
```{r}
library(gganimate)
world_map_freedom <- map_data("world") %>%
as_tibble() %>%
regex_left_join(maps::iso3166, c(region = "mapname")) %>%
left_join(freedom_joined %>% select(-region), by = c(a2 = "country_code")) %>%
filter(region != "Antarctica")
world_map_freedom %>%
filter(metric == "Civil Liberties") %>%
ggplot(aes(long, lat, group = group)) +
geom_polygon(aes(fill = value)) +
coord_map(xlim = c(-180, 180)) +
scale_fill_gradient2(low = "blue",
high = "red",
midpoint = 3.5,
guide = guide_legend(reverse = TRUE)) +
ggthemes::theme_map() +
transition_manual(year) +
labs(fill = "Civil Liberties Rating",
title = "World Freedom Index: Civil Liberties ({ current_frame })")
```
```{r}
freedom %>%
distinct(country, country_code) %>%
View()
gdp_percap %>%
filter(str_detect(country, "Iran"))
```