-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbf_svm.py
80 lines (63 loc) · 2.45 KB
/
rbf_svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import pandas as pd
import numpy as np
from sklearn import svm
import read_data
from prettytable import PrettyTable
def train(c, X, y):
y = y.ravel()
rbf_svm = svm.SVC(C=c, gamma='scale', kernel='rbf')
rbf_svm.fit(X,y)
return rbf_svm
def run():
training_features_matrix_all, training_labels_matrix_all = read_data.read_training_data_all()
training_features_matrix_no_time, training_labels_matrix_no_time = read_data.read_training_data_no_time()
C = [0.0001, 0.001, 0.01, 1, 10, 100, 1000,10000,100000]
t = PrettyTable(['C value', 'Mistakes on the training data set'])
#Testing slack variables with date included
print("Testing RBF SVM with the time included")
for c in C:
training_mistakes_count = 0
clf = train(c, training_features_matrix_all, training_labels_matrix_all)
for i in range(len(training_labels_matrix_all)):
Xi = training_features_matrix_all[i].reshape(1,-1)
if(clf.predict(Xi) != training_labels_matrix_all[i]):
training_mistakes_count+=1
'''
for i in range(len(testing1_labels_matrix_all)):
Xi = testing1_features_matrix_all[i].reshape(1,-1)
if(clf.predict(Xi) != testing1_labels_matrix_all[i]):
testing_mistakes_count1+=1
for i in range(len(testing2_labels_matrix_all)):
Xi = testing2_features_matrix_all[i].reshape(1,-1)
if(clf.predict(Xi) != testing2_labels_matrix_all[i]):
testing_mistakes_count2+=1
'''
t.add_row([c, training_mistakes_count])
print t
print("")
t1 = PrettyTable(['C value', 'Mistakes on training set'])
#Testing slack variables without date
print("Testing RBF SVM without the time")
for c in C:
training_mistakes_count = 0
#testing_mistakes_count1 = 0
#testing_mistakes_count2 = 0
clf = train(c, training_features_matrix_no_time, training_labels_matrix_no_time)
for i in range(len(training_labels_matrix_no_time)):
Xi = training_features_matrix_no_time[i].reshape(1,-1)
if(clf.predict(Xi) != training_labels_matrix_no_time[i]):
training_mistakes_count+=1
'''
for i in range(len(testing1_labels_matrix_no_time)):
Xi = testing1_features_matrix_no_time[i].reshape(1,-1)
if(clf.predict(Xi) != testing1_labels_matrix_no_time[i]):
testing_mistakes_count1+=1
for i in range(len(testing2_labels_matrix_no_time)):
Xi = testing2_features_matrix_no_time[i].reshape(1,-1)
if(clf.predict(Xi) != testing2_labels_matrix_no_time[i]):
testing_mistakes_count2+=1
'''
t1.add_row([c, training_mistakes_count])
print t1
if __name__=='__main__':
run()