-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrbftest.py
32 lines (32 loc) · 1.08 KB
/
rbftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pandas as pd
import numpy as np
from sklearn import svm
import read_data
def main():
X,y = read_data.read_training_data_all()
Xtest,Ytest = read_data.read_testing_data1()
y = y.ravel()
C = [100,1000,10000]
print('training data has ', len(X), ' samples')
print('testing data has ' , len(Xtest), ' samples')
for c in C:
clf = svm.SVC(C=c,gamma='scale',kernel='rbf')
# clf2 = svm.SVC(C=c,gamma='scale',kernel='linear')
clf.fit(X,y)
# clf2.fit(X,y)
count = 0
count2 = 0
for i in range(len(y)):
Xi = X[i].reshape(1,-1)
if clf.predict(Xi) != y[i]:
count+=1
for i in range(len(Ytest)):
Xi = Xtest[i].reshape(1,-1)
if clf.predict(Xi) != Ytest[i]:
count2+=1
# if clf2.predict(Xi) != y[i]:
# count2+=1
print('rbf training mistakes made = ',count, ' with c = ',c)
print('rbf test mistakes made = ', count2, ' with c = ', c)
# print('linaer mistakes made = ',count2, ' with c = ', c)
main()