-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgpt4v.py
78 lines (59 loc) · 1.77 KB
/
gpt4v.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from openai import OpenAI
import base64
import requests
from PIL import Image
import io
from torchvision import transforms
# OpenAI API Key
api_key = "Replace with your own OPENAI KEY."
# Function to encode the image
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def encode_tensor_image(tensor):
# print(tensor.shape)
if tensor.ndim == 4 and tensor.shape[0] == 1:
tensor = tensor.squeeze(0)
# toPIL = transforms.ToPILImage()
# image = toPIL(tensor)
tensor = tensor.squeeze(0).permute(1, 2, 0)
image = Image.fromarray(tensor.mul(255).byte().numpy()).convert('RGB')
buffer = io.BytesIO()
buffers='./test.jpg'
image.save(buffer, format="JPEG")
image.save(buffers, format="JPEG")
buffer.seek(0)
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
return image_base64
def gpt4v_observe(image_tensor, text_prompt):
# Path to your image
# image_path = "Imagenet/train/n01440764/n01440764_39.JPEG"
# Getting the base64 string
base64_image = encode_tensor_image(image_tensor)
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": "gpt-4-vision-preview",
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": text_prompt
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"max_tokens": 300
}
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
return response.json()