-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsimple_regression.py
362 lines (334 loc) · 16.3 KB
/
simple_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# -*- encoding: utf-8 -*-
import pandas as pd
import numpy as np
import sqlite3
from sklearn.ensemble.forest import RandomForestRegressor
from sklearn.externals import joblib
from keras.models import Sequential
from keras.layers import Dense, Dropout, normalization
from keras.wrappers.scikit_learn import KerasRegressor
from keras.models import model_from_json
from keras import backend as K
from sklearn.preprocessing import StandardScaler
import tensorflow as tf
import os, sys
from etaprogress.progress import ProgressBar
MODEL_TYPE = 'keras'
def baseline_model():
# create model
model = Sequential()
#model.add(Dense(128, input_dim=174, init='he_normal', activation='relu'))
model.add(Dense(128, input_dim=690, init='he_normal', activation='relu'))
#model.add(normalization.BatchNormalization(epsilon=0.001, mode=0, axis=-1, momentum=0.99, weights=None, beta_init='zero', gamma_init='one', gamma_regularizer=None, beta_regularizer=None))
#model.add(Dropout(0.1))
#model.add(Dense(128, init='he_normal'))
model.add(Dense(1, init='he_normal'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam')
return model
class SimpleModel:
def __init__(self):
self.data = dict()
self.frame_len = 30
self.predict_dist = 5
self.scaler = dict()
def load_all_data(self, begin_date, end_date):
con = sqlite3.connect('../data/stock.db')
code_list = con.execute("SELECT name FROM sqlite_master WHERE type='table'").fetchall()
X_data_list, Y_data_list, DATA_list = [0]*10, [0]*10, [0]*10
idx = 0
split = int(len(code_list) / 9)
bar = ProgressBar(len(code_list), max_width=80)
for code in code_list:
data = self.load_data(code[0], begin_date, end_date)
data = data.dropna()
X, Y = self.make_x_y(data, code[0])
if len(X) <= 1: continue
code_array = [code[0]] * len(X)
assert len(X) == len(data.loc[29:len(data)-6, '일자'])
if idx%split == 0:
X_data_list[int(idx/split)] = list(X)
Y_data_list[int(idx/split)] = list(Y)
DATA_list[int(idx/split)] = np.array([data.loc[29:len(data)-6, '일자'].values.tolist(), code_array, data.loc[29:len(data)-6, '현재가'], data.loc[34:len(data), '현재가']]).T.tolist()
else:
X_data_list[int(idx/split)].extend(X)
Y_data_list[int(idx/split)].extend(Y)
DATA_list[int(idx/split)].extend(np.array([data.loc[29:len(data)-6, '일자'].values.tolist(), code_array, data.loc[29:len(data)-6, '현재가'], data.loc[34:len(data), '현재가']]).T.tolist())
bar.numerator += 1
print("%s | %d" % (bar, len(X_data_list[int(idx/split)])), end='\r')
sys.stdout.flush()
idx += 1
print("%s" % bar)
print("Merge splited data")
bar = ProgressBar(10, max_width=80)
for i in range(10):
if type(X_data_list[i]) == type(1):
continue
if i == 0:
X_data = X_data_list[i]
Y_data = Y_data_list[i]
DATA = DATA_list[i]
else:
X_data.extend(X_data_list[i])
Y_data.extend(Y_data_list[i])
DATA.extend(DATA_list[i])
bar.numerator = i+1
print("%s | %d" % (bar, len(DATA)), end='\r')
sys.stdout.flush()
print("%s | %d" % (bar, len(DATA)))
return np.array(X_data), np.array(Y_data), np.array(DATA)
def load_data(self, code, begin_date, end_date):
con = sqlite3.connect('../data/stock.db')
df = pd.read_sql("SELECT * from '%s'" % code, con, index_col='일자').sort_index()
data = df.loc[df.index > str(begin_date)]
data = data.loc[data.index < str(end_date)]
data = data.reset_index()
return data
def make_x_y(self, data, code):
data_x = []
data_y = []
for col in data.columns:
try:
data.loc[:, col] = data.loc[:, col].str.replace('--', '-')
data.loc[:, col] = data.loc[:, col].str.replace('+', '')
except AttributeError as e:
pass
print(e)
data.loc[:, 'month'] = data.loc[:, '일자'].str[4:6]
data = data.drop(['일자', '체결강도'], axis=1)
# normalization
data = np.array(data)
if len(data) <= 0 :
return np.array([]), np.array([])
if code not in self.scaler:
self.scaler[code] = StandardScaler()
data = self.scaler[code].fit_transform(data)
elif code not in self.scaler:
return np.array([]), np.array([])
else:
data = self.scaler[code].transform(data)
for i in range(self.frame_len, len(data)-self.predict_dist+1):
data_x.extend(np.array(data[i-self.frame_len:i, :]))
data_y.append(data[i+self.predict_dist-1][0])
np_x = np.array(data_x).reshape(-1, 23*30)
np_y = np.array(data_y)
return np_x, np_y
def train_model(self, X_train, Y_train):
print("training model %d_%d.pkl" % (self.frame_len, self.predict_dist))
model_name = "../model/simple_reg_model/%d_%d.pkl" % (self.frame_len, self.predict_dist)
self.estimator = RandomForestRegressor(random_state=0, n_estimators=100, n_jobs=-1)
self.estimator.fit(X_train, Y_train)
print("finish training model")
joblib.dump(self.estimator, model_name)
def set_config(self):
#Tensorflow GPU optimization
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
K.set_session(sess)
def train_model_keras(self, X_train, Y_train, date):
print("training model %d_%d.h5" % (self.frame_len, self.predict_dist))
model_name = "../model/reg_keras/%d_%d_%s.h5" % (self.frame_len, self.predict_dist, date)
self.estimator = KerasRegressor(build_fn=baseline_model, nb_epoch=200, batch_size=64, verbose=1)
self.estimator.fit(X_train, Y_train)
print("finish training model")
# saving model
json_model = self.estimator.model.to_json()
open(model_name.replace('h5', 'json'), 'w').write(json_model)
self.estimator.model.save_weights(model_name, overwrite=True)
def evaluate_model(self, X_test, Y_test, orig_data, s_date):
print("Evaluate model %d_%d.pkl" % (self.frame_len, self.predict_dist))
if MODEL_TYPE == 'random_forest':
model_name = "../model/simple_reg_model/%d_%d.pkl" % (self.frame_len, self.predict_dist)
self.estimator = joblib.load(model_name)
elif MODEL_TYPE == 'keras':
model_name = "../model/reg_keras/%d_%d_%s.h5" % (self.frame_len, self.predict_dist, s_date)
self.estimator = model_from_json(open(model_name.replace('h5', 'json')).read())
self.estimator.load_weights(model_name)
pred = self.estimator.predict(X_test)
res = 0
score = 0
assert(len(pred) == len(Y_test))
pred = np.array(pred).reshape(-1)
Y_test = np.array(Y_test).reshape(-1)
for i in range(len(pred)):
score += (float(pred[i]) - float(Y_test[i]))*(float(pred[i]) - float(Y_test[i]))
score = np.sqrt(score/len(pred))
print("score: %f" % score)
for idx in range(len(pred)):
buy_price = int(orig_data[idx][2])
future_price = int(orig_data[idx][3])
date = int(orig_data[idx][0])
pred_transform = self.scaler[orig_data[idx][1]].inverse_transform([pred[idx]] + [0]*22)[0]
cur_transform = self.scaler[orig_data[idx][1]].inverse_transform([X_test[idx][23*29]] + [0]*22)[0]
if pred_transform > buy_price * 1.01:
res += (future_price - buy_price*1.005)*(100000/buy_price+1)
print("[%s] buy: %6d, sell: %6d, earn: %6d" % (str(date), buy_price, future_price, (future_price - buy_price*1.005)*(100000/buy_price)))
print("result: %d" % res)
def load_current_data(self):
con = sqlite3.connect('../data/stock.db')
code_list = con.execute("SELECT name FROM sqlite_master WHERE type='table'").fetchall()
X_test = []
DATA = []
code_list = list(map(lambda x: x[0], code_list))
first = True
bar = ProgressBar(len(code_list), max_width=80)
for code in code_list:
bar.numerator += 1
print("%s | %d" % (bar, len(X_test)), end='\r')
sys.stdout.flush()
df = pd.read_sql("SELECT * from '%s'" % code, con, index_col='일자').sort_index()
data = df.iloc[-30:,:]
data = data.reset_index()
for col in data.columns:
try:
data.loc[:, col] = data.loc[:, col].str.replace('--', '-')
data.loc[:, col] = data.loc[:, col].str.replace('+', '')
except AttributeError as e:
pass
data.loc[:, 'month'] = data.loc[:, '일자'].str[4:6]
data = data.drop(['일자', '체결강도'], axis=1)
if len(data) < 30:
code_list.remove(code)
continue
DATA.append(int(data.loc[len(data)-1, '현재가']))
try:
data = self.scaler[code].transform(np.array(data))
except KeyError:
code_list.remove(code)
continue
X_test.extend(np.array(data))
X_test = np.array(X_test).reshape(-1, 23*30)
return X_test, code_list, DATA
def make_buy_list(self, X_test, code_list, orig_data, s_date):
BUY_UNIT = 10000
print("make buy_list")
if MODEL_TYPE == 'random_forest':
model_name = "../model/simple_reg_model/%d_%d.pkl" % (self.frame_len, self.predict_dist)
self.estimator = joblib.load(model_name)
elif MODEL_TYPE == 'keras':
model_name = "../model/reg_keras/%d_%d_%s.h5" % (self.frame_len, self.predict_dist, s_date)
self.estimator = model_from_json(open(model_name.replace('h5', 'json')).read())
self.estimator.load_weights(model_name)
pred = self.estimator.predict(X_test)
res = 0
score = 0
pred = np.array(pred).reshape(-1)
# load code list from account
set_account = set([])
with open('../data/stocks_in_account.txt') as f_stocks:
for line in f_stocks.readlines():
data = line.split(',')
set_account.add(data[6].replace('A', ''))
buy_item = ["매수", "", "시장가", 0, 0, "매수전"] # 매수/매도, code, 시장가/현재가, qty, price, "주문전/주문완료"
with open("../data/buy_list.txt", "wt") as f_buy:
for idx in range(len(pred)):
real_buy_price = int(orig_data[idx])
buy_price = float(X_test[idx][23*29])
try:
pred_transform = self.scaler[code_list[idx]].inverse_transform([pred[idx]] + [0]*22)[0]
except KeyError:
continue
print("[BUY PREDICT] code: %s, cur: %5d, predict: %5d" % (code_list[idx], real_buy_price, pred_transform))
if pred_transform > real_buy_price * 3 and code_list[idx] not in set_account:
print("add to buy_list %s" % code_list[idx])
buy_item[1] = code_list[idx]
buy_item[3] = int(BUY_UNIT / real_buy_price) + 1
for item in buy_item:
f_buy.write("%s;"%str(item))
f_buy.write('\n')
def load_data_in_account(self):
# load code list from account
DATA = []
with open('../data/stocks_in_account.txt') as f_stocks:
for line in f_stocks.readlines():
data = line.split(',')
DATA.append([data[6].replace('A', ''), data[1], data[0]])
# load data in DATA
con = sqlite3.connect('../data/stock.db')
X_test = []
idx_rm = []
first = True
bar = ProgressBar(len(DATA), max_width=80)
for idx, code in enumerate(DATA):
bar.numerator += 1
print("%s | %d" % (bar, len(X_test)), end='\r')
sys.stdout.flush()
try:
df = pd.read_sql("SELECT * from '%s'" % code[0], con, index_col='일자').sort_index()
except pd.io.sql.DatabaseError as e:
print(e)
idx_rm.append(idx)
continue
data = df.iloc[-30:,:]
data = data.reset_index()
for col in data.columns:
try:
data.loc[:, col] = data.loc[:, col].str.replace('--', '-')
data.loc[:, col] = data.loc[:, col].str.replace('+', '')
except AttributeError as e:
pass
print(e)
data.loc[:, 'month'] = data.loc[:, '일자'].str[4:6]
DATA[idx].append(int(data.loc[len(data)-1, '현재가']))
data = data.drop(['일자', '체결강도'], axis=1)
if len(data) < 30:
idx_rm.append(idx)
continue
try:
data = self.scaler[code[0]].transform(np.array(data))
except KeyError:
idx_rm.append(idx)
continue
X_test.extend(np.array(data))
for i in idx_rm[-1:0:-1]:
del DATA[i]
X_test = np.array(X_test).reshape(-1, 23*30)
return X_test, DATA
def make_sell_list(self, X_test, DATA, s_date):
print("make sell_list")
if MODEL_TYPE == 'random_forest':
model_name = "../model/simple_reg_model/%d_%d.pkl" % (self.frame_len, self.predict_dist)
self.estimator = joblib.load(model_name)
elif MODEL_TYPE == 'keras':
model_name = "../model/reg_keras/%d_%d_%s.h5" % (self.frame_len, self.predict_dist, s_date)
self.estimator = model_from_json(open(model_name.replace('h5', 'json')).read())
self.estimator.load_weights(model_name)
pred = self.estimator.predict(X_test)
res = 0
score = 0
pred = np.array(pred).reshape(-1)
sell_item = ["매도", "", "시장가", 0, 0, "매도전"] # 매수/매도, code, 시장가/현재가, qty, price, "주문전/주문완료"
with open("../data/sell_list.txt", "wt") as f_sell:
for idx in range(len(pred)):
current_price = float(X_test[idx][23*29])
current_real_price = int(DATA[idx][3])
name = DATA[idx][2]
print("[SELL PREDICT] name: %s, code: %s, cur: %f(%d), predict: %f" % (name, DATA[idx][0], current_price, current_real_price, pred[idx]))
if pred[idx] < current_price:
print("add to sell_list %s" % name)
sell_item[1] = DATA[idx][0]
sell_item[3] = DATA[idx][1]
for item in sell_item:
f_sell.write("%s;"%str(item))
f_sell.write('\n')
def save_scaler(self, s_date):
model_name = "../model/scaler_%s.pkl" % s_date
joblib.dump(self.scaler, model_name)
def load_scaler(self, s_date):
model_name = "../model/scaler_%s.pkl" % s_date
self.scaler = joblib.load(model_name)
if __name__ == '__main__':
sm = SimpleModel()
sm.set_config()
X_train, Y_train, _ = sm.load_all_data(20110101, 20160630)
sm.train_model_keras(X_train, Y_train, "20110101_20160630")
sm.save_scaler("20110101_20160630")
sm.load_scaler("20110101_20160630")
X_test, Y_test, Data = sm.load_all_data(20160520, 20160901)
sm.evaluate_model(X_test, Y_test, Data, "20110101_20160630")
#sm.load_scaler("20110101_20170307")
#X_data, code_list, data = sm.load_current_data()
#sm.make_buy_list(X_data, code_list, data, "20110101_20170307")
#X_data, data = sm.load_data_in_account()
#sm.make_sell_list(X_data, data, "20110101_20170307")