-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_pointmlp_hycore.py
285 lines (253 loc) · 13 KB
/
main_pointmlp_hycore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
"""
for training with resume functions.
Usage:
python main.py --model PointNet --msg demo
or
CUDA_VISIBLE_DEVICES=0 nohup python main.py --model PointNet --msg demo > nohup/PointNet_demo.out &
"""
import argparse
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import logging
import datetime
import torch
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
from torch.utils.data import DataLoader
import models as models
from models.pointmlp import pointMLP, Hype_pointMLP
from utils import Logger, mkdir_p, progress_bar, save_model, save_args, cal_loss
from ScanObjectNN import ScanObjectNN
from torch.optim.lr_scheduler import CosineAnnealingLR
import sklearn.metrics as metrics
from hutil import hype_triplet_losses, get_children_np
import numpy as np
import geoopt
import random
def parse_args():
"""Parameters"""
parser = argparse.ArgumentParser('training')
parser.add_argument('-c', '--checkpoint', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--msg', type=str, help='message after checkpoint')
parser.add_argument('--batch_size', type=int, default=32, help='batch size in training')
parser.add_argument('--model', default='PointNet', help='model name [default: pointnet_cls]')
parser.add_argument('--num_classes', default=15, type=int, help='default value for classes of ScanObjectNN')
parser.add_argument('--epoch', default=200, type=int, help='number of epoch in training')
parser.add_argument('--num_points', type=int, default=1024, help='Point Number')
parser.add_argument('--learning_rate', default=0.01, type=float, help='learning rate in training')
parser.add_argument('--weight_decay', type=float, default=1e-4, help='decay rate')
parser.add_argument('--smoothing', action='store_true', default=False, help='loss smoothing')
parser.add_argument('--seed', type=int, default=12, help='random seed')
parser.add_argument('--workers', default=4, type=int, help='workers')
return parser.parse_args()
def main():
args = parse_args()
os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE"
if args.seed is not None:
torch.manual_seed(args.seed)
print('Setting seed --> ',args.seed)
#stop
torch.manual_seed(args.seed)
np.random.seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.cuda.manual_seed(args.seed)
torch.set_printoptions(10)
random.seed(args.seed)
if torch.cuda.is_available():
device = 'cuda'
if args.seed is not None:
torch.cuda.manual_seed(args.seed)
else:
device = 'cpu'
time_str = str(datetime.datetime.now().strftime('-%Y%m%d%H%M%S'))
if args.msg is None:
message = time_str
else:
message = "-toyproof-" + args.msg
args.checkpoint = 'checkpoints/' + args.model + message
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
screen_logger = logging.getLogger("Model")
screen_logger.setLevel(logging.INFO)
formatter = logging.Formatter('%(message)s')
file_handler = logging.FileHandler(os.path.join(args.checkpoint, "out.txt"))
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
screen_logger.addHandler(file_handler)
def printf(str):
screen_logger.info(str)
print(str)
# Model
printf(f"args: {args}")
printf('==> Building model..')
net = Hype_pointMLP(num_classes=args.num_classes) #models.__dict__[args.model](num_classes=args.num_classes)
criterion2 = hype_triplet_losses
criterion = cal_loss
net = net.to(device)
# criterion = criterion.to(device)
if device == 'cuda':
#net = torch.nn.DataParallel(net)
cudnn.benchmark = True
best_test_acc = 0. # best test accuracy
best_train_acc = 0.
best_test_acc_avg = 0.
best_train_acc_avg = 0.
best_test_loss = float("inf")
best_train_loss = float("inf")
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
optimizer_dict = None
if not os.path.isfile(os.path.join(args.checkpoint, "best_checkpoint.pth")):
save_args(args)
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title="ModelNet" + args.model)
logger.set_names(["Epoch-Num", 'Learning-Rate',
'Train-Loss', 'Train-acc-B', 'Train-acc',
'Valid-Loss', 'Valid-acc-B', 'Valid-acc'])
else:
printf(f"Resuming last checkpoint from {args.checkpoint}")
checkpoint_path = os.path.join(args.checkpoint, "best_checkpoint.pth")
checkpoint = torch.load(checkpoint_path)
net.load_state_dict(checkpoint['net'])
start_epoch = checkpoint['epoch']
best_test_acc = checkpoint['best_test_acc']
best_train_acc = checkpoint['best_train_acc']
best_test_acc_avg = checkpoint['best_test_acc_avg']
best_train_acc_avg = checkpoint['best_train_acc_avg']
best_test_loss = checkpoint['best_test_loss']
best_train_loss = checkpoint['best_train_loss']
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title="ModelNet" + args.model, resume=True)
optimizer_dict = checkpoint['optimizer']
printf('==> Preparing data..')
train_loader = DataLoader(ScanObjectNN(partition='training', num_points=args.num_points), num_workers=args.workers,
batch_size=args.batch_size, shuffle=True, drop_last=True)
test_loader = DataLoader(ScanObjectNN(partition='test', num_points=args.num_points), num_workers=args.workers,
batch_size=args.batch_size, shuffle=True, drop_last=False)
optimizer = geoopt.optim.RiemannianSGD( net.parameters() , lr= args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
#optimizer = torch.optim.SGD(net.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=args.weight_decay)
if optimizer_dict is not None:
optimizer.load_state_dict(optimizer_dict)
scheduler = CosineAnnealingLR(optimizer, args.epoch, eta_min=args.learning_rate / 100, last_epoch=start_epoch - 1)
printf(f"++++++++" * 2 + "Final results" + "++++++++" * 2)
#printf(f"++ Last Train time: {train_out['time']} | Last Test time: {test_out['time']} ++")
printf(f"++ Best Train loss: {best_train_loss} | Best Test loss: {best_test_loss} ++")
printf(f"++ Best Train acc_B: {best_train_acc_avg} | Best Test acc_B: {best_test_acc_avg} ++")
printf(f"++ Best Train acc: {best_train_acc} | Best Test acc: {best_test_acc} ++")
printf(f"++++++++" * 5)
for epoch in range(start_epoch, args.epoch):
#printf('Epoch(%d/%s) Learning Rate %s:' % (epoch + 1, args.epoch, optimizer.param_groups[0]['lr']))
std_loss,y_loss,h_loss,pd,nd,pn,posn,train_out = train(net, train_loader, optimizer, criterion, criterion2, device)
#train_out = train(net, train_loader, optimizer, criterion, device) # {"loss", "acc", "acc_avg", "time"}
test_out = validate(net, test_loader, criterion, device)
scheduler.step()
if test_out["acc"] > best_test_acc:
best_test_acc = test_out["acc"]
is_best = True
else:
is_best = False
best_test_acc = test_out["acc"] if (test_out["acc"] > best_test_acc) else best_test_acc
best_train_acc = train_out["acc"] if (train_out["acc"] > best_train_acc) else best_train_acc
best_test_acc_avg = test_out["acc_avg"] if (test_out["acc_avg"] > best_test_acc_avg) else best_test_acc_avg
best_train_acc_avg = train_out["acc_avg"] if (train_out["acc_avg"] > best_train_acc_avg) else best_train_acc_avg
best_test_loss = test_out["loss"] if (test_out["loss"] < best_test_loss) else best_test_loss
best_train_loss = train_out["loss"] if (train_out["loss"] < best_train_loss) else best_train_loss
save_model(
net, epoch, path=args.checkpoint, acc=test_out["acc"], is_best=is_best,
best_test_acc=best_test_acc, # best test accuracy
best_train_acc=best_train_acc,
best_test_acc_avg=best_test_acc_avg,
best_train_acc_avg=best_train_acc_avg,
best_test_loss=best_test_loss,
best_train_loss=best_train_loss,
optimizer=optimizer.state_dict()
)
logger.append([epoch, optimizer.param_groups[0]['lr'],
train_out["loss"], train_out["acc_avg"], train_out["acc"],
test_out["loss"], test_out["acc_avg"], test_out["acc"]])
if epoch%50==0:
printf('Epoch(%d/%s) Learning Rate %s:' % (epoch + 1, args.epoch, optimizer.param_groups[0]['lr']))
printf(f"Training loss:[{std_loss},{y_loss},{h_loss}],pd/nd [{pd},{nd}], par/pos norm [{pn},{posn}] , acc_avg:{train_out['acc_avg']}% acc:{train_out['acc']}% time:{train_out['time']}s")
#printf(f"Training loss:{train_out['loss']} acc_avg:{train_out['acc_avg']}% acc:{train_out['acc']}% time:{train_out['time']}s")
printf(f"Testing loss:{test_out['loss']} acc_avg:{test_out['acc_avg']}% "f"acc:{test_out['acc']}% time:{test_out['time']}s [best test acc: {best_test_acc}%] \n\n")
logger.close()
printf(f"++++++++" * 2 + "Final results" + "++++++++" * 2)
printf(f"++ Last Train time: {train_out['time']} | Last Test time: {test_out['time']} ++")
printf(f"++ Best Train loss: {best_train_loss} | Best Test loss: {best_test_loss} ++")
printf(f"++ Best Train acc_B: {best_train_acc_avg} | Best Test acc_B: {best_test_acc_avg} ++")
printf(f"++ Best Train acc: {best_train_acc} | Best Test acc: {best_test_acc} ++")
printf(f"++++++++" * 5)
def train(net, trainloader, optimizer, criterion, criterion2,device):
net.train()
train_loss = 0
correct = 0
total = 0
train_pred = []
train_true = []
time_cost = datetime.datetime.now()
for batch_idx, (data, label) in enumerate(trainloader):
data, label = data.to(device), label.to(device).squeeze()
data = data.permute(0, 2, 1) # so, the input data shape is [batch, 3, 1024]
optimizer.zero_grad()
_, data, n_points = get_children_np(data,kmin=600, kmax=1024)
mar, pos_data, _ = get_children_np(data,starting=n_points,kmin=200, kmax=n_points//2)
pos_mu, _ = net(pos_data)
parent_mu, logits = net(data)
pn, posn, pd, nd, t_loss, h_loss = criterion2(parent_mu,pos_mu, hier_margin=mar*0.5, contr_margin=4, ball_dim = 256)
std_loss = criterion(logits, label)
loss = std_loss + 0.01*t_loss + 0.001*h_loss
loss.backward()
torch.nn.utils.clip_grad_norm_(net.parameters(), 1)
optimizer.step()
train_loss += loss.item()
preds = logits.max(dim=1)[1]
train_true.append(label.cpu().numpy())
train_pred.append(preds.detach().cpu().numpy())
total += label.size(0)
correct += preds.eq(label).sum().item()
#progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
time_cost = int((datetime.datetime.now() - time_cost).total_seconds())
train_true = np.concatenate(train_true)
train_pred = np.concatenate(train_pred)
return std_loss,t_loss,h_loss,pd,nd,pn,posn,{
"loss": float("%.3f" % (train_loss / (batch_idx + 1))),
"acc": float("%.3f" % (100. * metrics.accuracy_score(train_true, train_pred))),
"acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(train_true, train_pred))),
"time": time_cost
}
def validate(net, testloader, criterion, device):
net.eval()
test_loss = 0
correct = 0
total = 0
test_true = []
test_pred = []
time_cost = datetime.datetime.now()
with torch.no_grad():
for batch_idx, (data, label) in enumerate(testloader):
data, label = data.to(device), label.to(device).squeeze()
data = data.permute(0, 2, 1)
_,logits = net(data)
loss = criterion(logits, label)
test_loss += loss.item()
preds = logits.max(dim=1)[1]
test_true.append(label.cpu().numpy())
test_pred.append(preds.detach().cpu().numpy())
total += label.size(0)
correct += preds.eq(label).sum().item()
#progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
# % (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
time_cost = int((datetime.datetime.now() - time_cost).total_seconds())
test_true = np.concatenate(test_true)
test_pred = np.concatenate(test_pred)
return {
"loss": float("%.3f" % (test_loss / (batch_idx + 1))),
"acc": float("%.3f" % (100. * metrics.accuracy_score(test_true, test_pred))),
"acc_avg": float("%.3f" % (100. * metrics.balanced_accuracy_score(test_true, test_pred))),
"time": time_cost
}
if __name__ == '__main__':
main()