-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgwasmp.cpp
813 lines (708 loc) · 29.5 KB
/
gwasmp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
/*****************************************************************************
* DISSECT: a tool for performing genomic analysis with large sample sizes
* Copyright (C) 2014-2015 Oriol Canela-Xandri and Albert Tenesa
* The Roslin Institute (University of Edinburgh)
*
* This file is part of DISSECT.
*
* DISSECT is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* DISSECT is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with DISSECT. If not, see <http://www.gnu.org/licenses/>.
****************************************************************************/
#include "gwas.h"
#include "analysis.h"
#include "reml.h"
#include "auxiliar.h"
#include "labeledmatrix.h"
#include "mpresiduals.h"
#include <vector>
#include <map>
#include <string>
#include <fstream>
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstdio>
void GWAS::loadGenotypeResidualFiles()
{
std::map<std::string, std::vector<std::string> > residuals2genotypes;
std::string usedFile;
if( options.genotypeAndResidualsListFile != "" )
{
usedFile = options.genotypeAndResidualsListFile;
std::vector< std::vector<std::string> > files;
getTableFromFile(options.genotypeAndResidualsListFile, files, 2);
for(int i = 0; i<files.size(); i++) //We load genotype and grm files in this way, because we want all genotype with same grms together in the list.
{
misc.checkFileExists(files[i][0] + ".bed");
misc.checkFileExists(files[i][0] + ".bim");
misc.checkFileExists(files[i][0] + ".fam");
misc.checkFileExists(files[i][1] + ".rowids");
misc.checkFileExists(files[i][1] + ".colids");
misc.checkFileExists(files[i][1] + ".dat");
residuals2genotypes[ files[i][1] ].push_back( files[i][0] );
}
}
else if(options.genotypeBGENAndResidualsListFile != "")
{
usedFile = options.genotypeBGENAndResidualsListFile;
this->genotypeFilesType = GenotypeAttributes::probabilities;
std::vector< std::vector<std::string> > files;
getTableFromFile(options.genotypeBGENAndResidualsListFile, files, 2);
for(int i = 0; i<files.size(); i++) //We load genotype and grm files in this way, because we want all genotype with same grms together in the list.
{
misc.checkFileExists(files[i][0] + ".bgen");
misc.checkFileExists(files[i][1] + ".rowids");
misc.checkFileExists(files[i][1] + ".colids");
misc.checkFileExists(files[i][1] + ".dat");
residuals2genotypes[ files[i][1] ].push_back( files[i][0] );
}
}
else
{
misc.error("Error: A file containing a list of genotype and residuals files have to be specified.", 0);
}
for( std::map<std::string, std::vector<std::string> >::iterator it = residuals2genotypes.begin(); it != residuals2genotypes.end(); ++it )
{
std::vector<std::string> genoFiles = it->second;
std::string grmFile = it->first;
for(int i = 0; i<genoFiles.size(); i++)
{
if( this->residualFiles.count(genoFiles[i]) != 0 )
{
misc.error("Error: There is at least one genotype file repeated in [ " + usedFile + " ] file. Genotype files have to be unique.", 0);
}
this->genotypeFiles.push_back(genoFiles[i]);
this->residualFiles[ genoFiles[i] ] = grmFile;
}
}
}
void GWAS::computeMultiplePhenotypeGWAS()
{
std::string backupOutFile = options.outFile;
if(this->genotypeFiles.size() > 1)
{
misc.message.tab = " ";
}
LabeledMatrix * residuals = NULL;
Matrix * groupedCommunicatorDistributedResiduals = NULL;
for(int i = 0; i<this->genotypeFiles.size(); i++)
{
if( this->genotypeFiles.size() > 1 )
{
options.outFile += "." + getFileName(this->genotypeFiles[i]);
}
//Load genotypes
this->currentFile = this->genotypeFiles[i];
Genotype * genotype = NULL;
if(this->genotypeFilesType == GenotypeAttributes::calls)
{
genotype = new Genotype(this->genotypeFiles[i]);
genotype->normalizeGenotypes();
}
else
{
std::set<std::string> keepSNPs;
std::set<std::string> keepIndividualIds = getIndividualIdsSpecifiedByOptionKeep();
genotype = new Genotype(this->genotypeFiles[i], keepSNPs, keepIndividualIds, GenotypeAttributes::probabilities);
genotype->normalizeGenotypes();
}
if(this->residualFiles.count( this->currentFile ) == 0)
{
misc.error("Error: Currently only allowed with covariance matrix. Work in progress. If you are interested on this type of analysis. Please, contact us.", 0);
}
else
{
if( this->residualFiles[this->currentFile] != this->currentResidualFile ) //Only load a new residual if file changes.
{
this->currentResidualFile = this->residualFiles[this->currentFile];
if(residuals != NULL)
{
delete residuals;
residuals = NULL;
}
residuals = new LabeledMatrix(this->currentResidualFile);
residuals->matrix->centerMatrixRowsColumns(column);
if(misc.gt(residuals->rowLabels.size() < 2))
{
misc.error("Error: There are less than 2 individuals for running the analysis. Please, check the overlap between covariates, phenotypes, and GRMs.", 0);
}
}
else
{
if(residuals == NULL)
{
misc.error("Error: An internal error has happened. The residuals are missing.", 0);
}
}
}
std::vector<std::string> commonIndividualsInGenotypeOrder = orderVectorAsTemplate(genotype->individualIds, residuals->rowLabels);
if( commonIndividualsInGenotypeOrder != residuals->rowLabels )
{
misc.error("Error: When performing a multiple phenotype analysis, all the genotype files, corrected by the same GRM, have to include the same individuals in the same order.", 0);
}
genotype->filterSNPsAndIndividuals(genotype->SNPIds, commonIndividualsInGenotypeOrder, false);
if( genotype->individualIds != residuals->rowLabels )
{
misc.error("Error: When performing a multiple phenotype analysis, all the genotype files, corrected by the same GRM have to include the same individuals in the same order.", 0);
}
//Start analysis
if(options.analysis != recursiveGWASAnalysis) //Perform grouped GWAS or standard GWAS
{
misc.setGetElapsedTime("GWAS");
misc.message << "Starting analysis..." << std::endl;
computeIndividualGWASMultiplePhenotypesGroupedCommunicator(genotype, residuals); //, Matrix ** groupedCommunicatorDistributedResiduals
misc.message << "Analysis finished after " << misc.setGetElapsedTime("GWAS", true) << "." << std::endl;
}
options.outFile = backupOutFile;
delete genotype;
}
if(residuals != NULL)
{
delete residuals;
residuals = NULL;
}
this->currentFile = "";
if(this->currentGRMBase != NULL)
{
delete this->currentGRMBase;
this->currentGRMBase = NULL;
}
if(this->genotypeFiles.size() > 1)
{
misc.message.tab = "";
misc.message << "GWAS analysis finished on all files." << std::endl;
}
}
void GWAS::computeMultiplePhenotypeGWASGroupedCommunicator()
{
std::string backupOutFile = options.outFile;
if(this->genotypeFiles.size() > 1)
{
misc.message.tab = " ";
}
Communicator * globalCommunicator = communicator;
Communicator * groupedCommunicator = new Communicator(globalCommunicator, basicGroupedCommunicator);
communicator = groupedCommunicator;
LabeledMatrix * residuals = NULL;
Matrix * groupedCommunicatorDistributedResiduals = NULL;
for(int i = 0; i<this->genotypeFiles.size(); i++)
{
if( this->genotypeFiles.size() > 1 )
{
options.outFile += "." + getFileName(this->genotypeFiles[i]);
}
//Get SNPs to keep for this group.
this->currentFile = this->genotypeFiles[i];
std::vector<std::string> allSNPIds;
if(this->genotypeFilesType == GenotypeAttributes::calls)
{
Genotype loadSNPs;
std::set<std::string> keepSNPs;
std::vector<int> SNPsBEDIdxsToKeep;
loadSNPs.readBIMFile(this->genotypeFiles[i], keepSNPs, SNPsBEDIdxsToKeep);
allSNPIds = loadSNPs.SNPIds;
}
else
{
#if defined(BGEN) && defined(ZLIB)
Genotype loadSNPs;
allSNPIds = loadSNPs.getBGENFileSNPs(this->genotypeFiles[i]);
#else
misc.error("Error: An internal error has happened. The current version of DISSECT is compiled without zlib and bgen support. These libraries are required for using this analysis with the current inputs.", 0);
#endif
}
int allNSNPs = allSNPIds.size();
int nSNPsBaseInGroup = allNSNPs/groupedCommunicator->nGroups;
int remainingSNPs = allNSNPs - (nSNPsBaseInGroup*groupedCommunicator->nGroups);
if(remainingSNPs < 0 || remainingSNPs >= groupedCommunicator->nGroups)
{
misc.error("Error: An internal error was happened. Unexpected remainder when distributing SNPs between grouped processes.", 0);
}
std::set<std::string> currentGroupSNPIds;
int isShift = 0;
for(int ig = 0; ig < groupedCommunicator->nGroups; ig++)
{
int nSNPsInGroup = nSNPsBaseInGroup;
if( ig < remainingSNPs )
{
nSNPsInGroup++;
}
if(ig == communicator->group)
{
for(int is = 0; is < nSNPsInGroup; is++)
{
int gsi = is + isShift; //Global SNP index.
currentGroupSNPIds.insert(allSNPIds[gsi]);
}
}
isShift += nSNPsInGroup;
}
if(isShift != allNSNPs)
{
misc.error("Error: An internal error has happened. Not all SNPs have been redistributed between grouped processes.", 0);
}
//Load genotypes
Genotype * genotype = NULL;
std::set<std::string> keepIndividualIds = getIndividualIdsSpecifiedByOptionKeep();
if(this->genotypeFilesType == GenotypeAttributes::calls)
{
genotype = new Genotype(this->genotypeFiles[i], currentGroupSNPIds, keepIndividualIds);
genotype->normalizeGenotypes();
}
else
{
genotype = new Genotype(this->genotypeFiles[i], currentGroupSNPIds, keepIndividualIds, GenotypeAttributes::probabilities);
genotype->normalizeGenotypes();
}
if(this->residualFiles.count( this->currentFile ) == 0)
{
misc.error("Error: Currently only allowed with covariance matrix. Work in progress. If you are interested on this type of analysis. Please, contact us.", 0);
}
else
{
if( this->residualFiles[this->currentFile] != this->currentResidualFile ) //Only load a new residual if file changes.
{
this->currentResidualFile = this->residualFiles[this->currentFile];
if(residuals != NULL)
{
delete residuals;
residuals = NULL;
}
residuals = new LabeledMatrix(this->currentResidualFile);
residuals->matrix->centerMatrixRowsColumns(column);
if(misc.gt(residuals->rowLabels.size() < 2))
{
misc.error("Error: There are less than 2 individuals for running the analysis. Please, check the overlap between covariates, phenotypes, and GRMs.", 0);
}
}
else
{
if(residuals == NULL)
{
misc.error("Error: An internal error has happened. The residuals are missing.", 0);
}
}
}
std::vector<std::string> commonIndividualsInGenotypeOrder = orderVectorAsTemplate(genotype->individualIds, residuals->rowLabels);
if( commonIndividualsInGenotypeOrder != residuals->rowLabels )
{
misc.error("Error: When performing a multiple phenotype analysis, all the genotype files, corrected by the same GRM, have to include the same individuals in the same order.", 0);
}
genotype->filterSNPsAndIndividuals(genotype->SNPIds, commonIndividualsInGenotypeOrder, false);
if( genotype->individualIds != residuals->rowLabels )
{
misc.error("Error: When performing a multiple phenotype analysis, all the genotype files, corrected by the same GRM have to include the same individuals in the same order.", 0);
}
//Start analysis
if(options.analysis != recursiveGWASAnalysis) //Perform grouped GWAS or standard GWAS
{
misc.setGetElapsedTime("GWAS");
misc.message << "Starting analysis..." << std::endl;
computeIndividualGWASMultiplePhenotypes(genotype, residuals, globalCommunicator); //, Matrix ** groupedCommunicatorDistributedResiduals
misc.message << "Analysis finished after " << misc.setGetElapsedTime("GWAS", true) << "." << std::endl;
}
options.outFile = backupOutFile;
delete genotype;
}
if(residuals != NULL)
{
delete residuals;
residuals = NULL;
}
this->currentFile = "";
communicator = globalCommunicator;
delete groupedCommunicator;
if(this->genotypeFiles.size() > 1)
{
misc.message.tab = "";
misc.message << "GWAS analysis finished on all files." << std::endl;
}
}
void GWAS::computeIndividualGWASMultiplePhenotypesGroupedCommunicator(Genotype * gcgenotype, LabeledMatrix * gcphenotypes)
{
std::map<std::string, GLMResults > results;
std::map<int, GLMResults > groupedResults;
std::map<std::string, std::vector<SNP> > resultSNPInfo;
std::vector<std::string> unfittedSNPs;
int nSNPs = gcgenotype->nSNPs;
Communicator * globalCommunicator = communicator;
Communicator * groupedCommunicator = new Communicator(globalCommunicator, basicGroupedCommunicator);
std::map< int, std::vector<int> > SNPidxs;
//Compute some matrices which whill be conserved.
misc.setGetElapsedTime("ytys");
misc.message << "Computing yty elements..." << std::endl;
Matrix * temp = new Matrix(gcphenotypes->matrix);
temp->elementWiseMultiplication(gcphenotypes->matrix);
Matrix * mOnes = new Matrix(MATRIX_DEFAULT_DISTRIBUTION, temp->nGlobRows, 1);
mOnes->fillWithConstant(1.);
Matrix * gcytys = new Matrix(MATRIX_DEFAULT_DISTRIBUTION);
gcytys->multiply(temp, 'T', mOnes, 'N'); //1 column matrix, each row should contain the yty for each phenotype.
delete temp;
delete mOnes;
misc.message << "Computation finished after " << misc.setGetElapsedTime("ytys", true) << "." << std::endl;
//Redistribute data between different communicators.
misc.setGetElapsedTime("redistribute");
misc.message << "Redistributing data between processes..." << std::endl;
Matrix * genotype = gcgenotype->genotypesRedistributionToGroupedCommunicatorMatrices(groupedCommunicator, SNPidxs);
Matrix * phenotypes = gcphenotypes->matrix->copyToGroupedCommunicator(groupedCommunicator);
Matrix * ytys = gcytys->copyToGroupedCommunicator(groupedCommunicator);
Matrix * globalCovarianceMatrix = NULL;
if( this->useCovariateMatrix == true )
{
globalCovarianceMatrix = this->currentCovarianceMatrix;
this->currentCovarianceMatrix = this->currentCovarianceMatrix->copyToGroupedCommunicator(groupedCommunicator);
}
misc.message << "Data redistributed after " << misc.setGetElapsedTime("redistribute", true) << "." << std::endl;
communicator = groupedCommunicator;
//Compute matrices needed after:
if( communicator->group == 0 )
{
misc.setGetElapsedTime("XtXs");
misc.message << "Computing XtX elements..." << std::endl;
}
temp = new Matrix(genotype);
temp->elementWiseMultiplication(genotype);
mOnes = new Matrix(MATRIX_DEFAULT_DISTRIBUTION, temp->nGlobCols, 1);
mOnes->fillWithConstant(1.);
Matrix * XtXs = new Matrix(MATRIX_DEFAULT_DISTRIBUTION);
XtXs->multiply(temp, 'N', mOnes, 'N'); //1 column matrix, each row should contain the XtX for each SNP.
delete mOnes;
delete temp;
if( communicator->group == 0 )
{
misc.message << "Computation finished after " << misc.setGetElapsedTime("XtXs", true) << "." << std::endl;
}
if( communicator->group == 0 )
{
misc.setGetElapsedTime("Xtys");
misc.message << "Computing Xty matrices..." << std::endl;
}
Matrix * Xtys = new Matrix(MATRIX_DEFAULT_DISTRIBUTION);
Xtys->multiply(genotype, 'N', phenotypes, 'N'); //MxN matrix where column n contain the Xty for the phenotype n and the row m the snp m.
if( communicator->group == 0 )
{
misc.message << "Computation finished after " << misc.setGetElapsedTime("Xtys", true) << "." << std::endl;
}
std::vector< std::vector<double> > gXtys;
Xtys->matrixToStandardVector(gXtys);
std::vector<double> gytys;
ytys->matrixToStandardVector(gytys);
std::vector<double> gXtXs;
XtXs->matrixToStandardVector(gXtXs);
if( misc.gt(gXtXs.size() != genotype->nGlobRows || gytys.size() != phenotypes->nGlobCols || gXtys.size() != genotype->nGlobRows || gXtys.size() == 0 ) )
{
misc.error("Error: An internal error was happened. Unexpected matrix dimensions when performing GWAS on multiple phenotypes.", 0);
}
if( misc.gt(gXtys[0].size() != phenotypes->nGlobCols) )
{
misc.error("Error: An internal error was happened. Unexpected matrix dimensions when performing GWAS on multiple phenotypes.", 0);
}
if( SNPidxs[ communicator->group ].size() != genotype->nGlobRows )
{
misc.error("Error: An internal error was happened. When performing individual SNP test in GWAS, discordance in grouped communicator size with local genotype size.", 0);
}
if( communicator->group == 0 )
{
misc.setGetElapsedTime("mpGWAS");
misc.message << "Starting GWAS for " + i2s(Xtys->nGlobCols) + " phenotypes and " + i2s(nSNPs) + " SNPs..." << std::endl;
}
int stepsForPercentageOutput = (genotype->nGlobRows/10);
stepsForPercentageOutput = (stepsForPercentageOutput == 0?1:stepsForPercentageOutput);
for(int isnp = 0; isnp < genotype->nGlobRows; isnp++ )
{
if( communicator->group == 0 && isnp % stepsForPercentageOutput == 1 )
{
misc.message << (100*isnp)/genotype->nGlobRows << "% completed." << std::endl;
}
int nIndividuals = genotype->nGlobCols;
GLMResults SNPResults;
bool success = computeGLMWithoutCovarianceMultiplePhenos(gXtXs[isnp], gXtys[isnp], gytys, nIndividuals, SNPResults);
if(communicator->mpiRoot)
{
int globalISNPdx = SNPidxs[ communicator->group ][isnp];
groupedResults[ globalISNPdx ] = SNPResults;
}
}
delete genotype;
delete phenotypes;
delete ytys;
delete XtXs;
if(communicator->mpiRoot == false)
{
groupedResults.clear();
}
communicator = globalCommunicator;
delete groupedCommunicator;
misc.message << "100%" << std::endl;
misc.message << "GWAS finished after " << misc.setGetElapsedTime("mpGWAS", true) << std::endl;
gatherResults(results, groupedResults, resultSNPInfo, gcgenotype, unfittedSNPs);
storeResultsMultiplePhenotype(results, resultSNPInfo, gcphenotypes->colLabels);
//delete intermediate matrices
delete gcytys;
if(communicator->mpiRoot && unfittedSNPs.size() != 0)
{
misc.message << "Warning: There are " << unfittedSNPs.size() << " SNPs which cannot be fitted. They are stored in file [ " << (options.outFile + ".gwas.unfitted") << " ]." << std::endl;
Message message(options.outFile + ".gwas.unfitted");
for(int i = 0; i < unfittedSNPs.size(); i++)
{
message << unfittedSNPs[i] << std::endl;
}
}
}
void GWAS::computeIndividualGWASMultiplePhenotypes(Genotype * gcgenotype, LabeledMatrix * gcphenotypes, Communicator * globalCommunicator)
{
std::map<std::string, GLMResults > results;
std::map<std::string, std::vector<SNP> > resultSNPInfo;
std::vector<std::string> unfittedSNPs;
int nSNPs = gcgenotype->nSNPs;
//Compute some matrices which whill be conserved.
misc.setGetElapsedTime("ytys");
misc.message << "Computing yty elements..." << std::endl;
Matrix * temp = new Matrix(gcphenotypes->matrix);
temp->elementWiseMultiplication(gcphenotypes->matrix);
Matrix * mOnes = new Matrix(MATRIX_DEFAULT_DISTRIBUTION, temp->nGlobRows, 1);
mOnes->fillWithConstant(1.);
Matrix * gcytys = new Matrix(MATRIX_DEFAULT_DISTRIBUTION);
gcytys->multiply(temp, 'T', mOnes, 'N'); //1 column matrix, each row should contain the yty for each phenotype.
delete temp;
delete mOnes;
misc.message << "Computation finished after " << misc.setGetElapsedTime("ytys", true) << "." << std::endl;
//Redistribute data between different communicators.
Matrix * genotype = gcgenotype->genotypes;
Matrix * phenotypes = gcphenotypes->matrix;
Matrix * ytys = gcytys;
Matrix * globalCovarianceMatrix = NULL;
if( this->useCovariateMatrix == true )
{
misc.error("Error: This analysis is not implemented.", 0);
}
//Compute matrices needed after:
if( communicator->group == 0 )
{
misc.setGetElapsedTime("XtXs");
misc.message << "Computing XtX elements..." << std::endl;
}
temp = new Matrix(genotype);
temp->elementWiseMultiplication(genotype);
mOnes = new Matrix(MATRIX_DEFAULT_DISTRIBUTION, temp->nGlobCols, 1);
mOnes->fillWithConstant(1.);
Matrix * XtXs = new Matrix(MATRIX_DEFAULT_DISTRIBUTION);
XtXs->multiply(temp, 'N', mOnes, 'N'); //1 column matrix, each row should contain the XtX for each SNP.
delete mOnes;
delete temp;
if( communicator->group == 0 )
{
misc.message << "Computation finished after " << misc.setGetElapsedTime("XtXs", true) << "." << std::endl;
}
if( communicator->group == 0 )
{
misc.setGetElapsedTime("Xtys");
misc.message << "Computing Xty matrices..." << std::endl;
}
Matrix * Xtys = new Matrix(MATRIX_DEFAULT_DISTRIBUTION);
Xtys->multiply(genotype, 'N', phenotypes, 'N'); //MxN matrix where column n contain the Xty for the phenotype n and the row m the snp m.
if( communicator->group == 0 )
{
misc.message << "Computation finished after " << misc.setGetElapsedTime("Xtys", true) << "." << std::endl;
}
std::vector< std::vector<double> > gXtys;
Xtys->matrixToStandardVector(gXtys);
std::vector<double> gytys;
ytys->matrixToStandardVector(gytys);
std::vector<double> gXtXs;
XtXs->matrixToStandardVector(gXtXs);
if( misc.gt(gXtXs.size() != genotype->nGlobRows || gytys.size() != phenotypes->nGlobCols || gXtys.size() != genotype->nGlobRows || gXtys.size() == 0 ) )
{
misc.error("Error: An internal error was happened. Unexpected matrix dimensions when performing GWAS on multiple phenotypes.", 0);
}
if( misc.gt(gXtys[0].size() != phenotypes->nGlobCols) )
{
misc.error("Error: An internal error was happened. Unexpected matrix dimensions when performing GWAS on multiple phenotypes.", 0);
}
if( communicator->group == 0 )
{
misc.setGetElapsedTime("mpGWAS");
misc.message << "Starting GWAS for " + i2s(Xtys->nGlobCols) + " phenotypes and " + i2s(nSNPs) + " SNPs..." << std::endl;
}
int stepsForPercentageOutput = (genotype->nGlobRows/10);
stepsForPercentageOutput = (stepsForPercentageOutput == 0?1:stepsForPercentageOutput);
for(int isnp = 0; isnp < genotype->nGlobRows; isnp++ )
{
if( communicator->group == 0 && isnp % stepsForPercentageOutput == 1 )
{
misc.message << (100*isnp)/genotype->nGlobRows << "% completed." << std::endl;
}
int nIndividuals = genotype->nGlobCols;
GLMResults SNPResults;
bool success = computeGLMWithoutCovarianceMultiplePhenos(gXtXs[isnp], gXtys[isnp], gytys, nIndividuals, SNPResults);
if(communicator->mpiRoot)
{
results[ gcgenotype->SNPIds[isnp] ] = SNPResults;
}
}
genotype = NULL;
phenotypes = NULL;
delete ytys;
delete XtXs;
if( communicator->group == 0 )
{
misc.message << "100%" << std::endl;
misc.message << "GWAS finished after " << misc.setGetElapsedTime("mpGWAS", true) << std::endl;
}
if(communicator->mpiRoot)
{
for(int isnp = 0; isnp<gcgenotype->nSNPs; isnp++)
{
std::string snpname = gcgenotype->SNPs[isnp].name;
if( results[ snpname ].success == true )
{
std::vector<SNP> temp;
temp.push_back(gcgenotype->SNPs[isnp]);
resultSNPInfo[ snpname ] = temp;
}
else
{
results.erase(snpname);
unfittedSNPs.push_back(snpname);
}
}
}
//Save results
std::stringstream partialResultsSS;
storeResultsMultiplePhenotype(results, resultSNPInfo, gcphenotypes->colLabels, partialResultsSS, communicator->group == 0);
Communicator * tempCommunicator = communicator;
communicator = globalCommunicator;
#if defined(BOOSTLIB) && defined(ZLIB)
std::string partialResults = compressData(partialResultsSS.str());
communicator->storeArraysMPI(options.outFile + ".multipheno.gwas.snps.gz", partialResults);
#else
std::string partialResults = partialResultsSS.str();
communicator->storeArraysMPI(options.outFile + ".multipheno.gwas.snps", partialResults);
#endif
communicator = tempCommunicator;
//Save unfitted SNPs
std::stringstream ssUnfittedSNPs;
if(communicator->mpiRoot && unfittedSNPs.size() != 0)
{
misc.message << "Warning: There are " << unfittedSNPs.size() << " SNPs which cannot be fitted. They are stored in file [ " << (options.outFile + ".gwas.unfitted") << " ]." << std::endl;
//Message message(options.outFile + ".gwas.unfitted");
for(int i = 0; i < unfittedSNPs.size(); i++)
{
ssUnfittedSNPs << unfittedSNPs[i] << std::endl;
}
}
tempCommunicator = communicator;
communicator = globalCommunicator;
communicator->storeArraysMPI(options.outFile + ".gwas.unfitted", ssUnfittedSNPs.str());
communicator = tempCommunicator;
}
bool GWAS::computeGLMWithoutCovarianceMultiplePhenos(double sXtX, std::vector<double> & phenosXtys, std::vector<double> & phenoytys, int nIndividuals, GLMResults & results)
{
if(sXtX <= 0.)
{
results.success = false;
return false;
}
double sXtX_i = 1./sXtX;
if(communicator->mpiRoot)
{
double n_q_1 = double(double(nIndividuals) - 1.);
results.btXty = -1;
results.SSE = -1;
results.MSE = -1;
results.b = std::vector<double>(phenosXtys.size());
results.SE = std::vector<double>(phenosXtys.size());
results.tStatistics = std::vector<double>(phenosXtys.size());
results.tStatisticPValues = std::vector<double>(phenosXtys.size());
for(int ipheno = 0; ipheno < phenosXtys.size(); ipheno++)
{
results.b[ipheno] = sXtX_i*phenosXtys[ipheno];
double btXty = results.b[ipheno]*phenosXtys[ipheno];
double SSE = phenoytys[ipheno] - btXty;
double MSE = SSE/double(n_q_1);
double temp = sqrt(MSE*sXtX_i);
results.SE[ipheno] = temp;
results.tStatistics[ipheno] = results.b[ipheno]/temp;
results.tStatisticPValues[ipheno] = 2*tStatCDF(n_q_1, fabs(results.b[ipheno]/temp) ) ;
}
}
results.type = OLSModelType;
results.success = true;
return true;
}
void GWAS::storeResultsMultiplePhenotype(std::map<std::string, GLMResults > & effects, std::map<std::string, std::vector<SNP> > & effectsSNPs, std::vector<std::string> & phenoLabels)
{
if(communicator->mpiRoot)
{
Message messageSNPs(options.outFile + ".multipheno.gwas.snps");
storeResultsMultiplePhenotype(effects, effectsSNPs, phenoLabels, *messageSNPs.output, true);
}
}
void GWAS::storeResultsMultiplePhenotype(std::map<std::string, GLMResults > & effects, std::map<std::string, std::vector<SNP> > & effectsSNPs, std::vector<std::string> & phenoLabels, std::ostream & messageSNPs, bool outputHeader)
{
if(communicator->mpiRoot)
{
//Message messageSNPs(options.outFile + ".multipheno.gwas.snps");
if(outputHeader == true)
{
messageSNPs << "SNP ALLELE MEAN STDEV";
for(int ipheno = 0; ipheno < phenoLabels.size(); ipheno++)
{
std::string phenoLabel = phenoLabels[ipheno];
messageSNPs << /*" BETA-" + phenoLabel <<*/ " NBETA-" + phenoLabel << /*" SE-" + phenoLabel <<*/ " NSE-" + phenoLabel << " PV-" + phenoLabel;
}
messageSNPs << std::endl;
}
for(std::map<std::string, GLMResults >::iterator it = effects.begin(); it != effects.end(); ++it)
{
std::string group = it->first;
GLMResults groupResults = it->second;
std::vector<double> globalEffects = groupResults.b;
std::vector<double> globalPValues;
if( groupResults.type == OLSModelType )
{
globalPValues = groupResults.tStatisticPValues;
}
else if( groupResults.type == REMLModelType || groupResults.type == MLModelType )
{
globalPValues = groupResults.chi2StatisticsPValues;
}
else
{
misc.error("Error: An internal error was happened. Invalid model type.", 0);
}
if( globalEffects.size() != phenoLabels.size() || globalPValues.size() != phenoLabels.size() || groupResults.SE.size() != phenoLabels.size())
{
misc.error("Error: An internal error was happened. Unexpected number of SNP results.", 0);
}
if(effectsSNPs[group].size() != 1)
{
misc.error("Error: An internal error was happened. Unexpected number of SNPs.", 0);
}
SNP snp = effectsSNPs[group][0];
messageSNPs << snp.name;
messageSNPs << " " << snp.allele2;
messageSNPs << " " << std::setprecision(3) << 2.*snp.p2;
messageSNPs << " " << std::setprecision(3) << snp.standardDev;
for(int ipheno = 0; ipheno < phenoLabels.size(); ipheno++)
{
//messageSNPs << " " << globalEffects[ ipheno ];
messageSNPs << " " << std::setprecision(5) << globalEffects[ ipheno ]/snp.standardDev;
//messageSNPs << " " << groupResults.SE[ ipheno ];
messageSNPs << " " << std::setprecision(5) << groupResults.SE[ ipheno ]/snp.standardDev;
messageSNPs << " " << globalPValues[ ipheno ];
}
messageSNPs << std::endl;
}
}
}