forked from tamarott/SinGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSR.py
72 lines (65 loc) · 2.68 KB
/
SR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from config import get_arguments
from SinGAN.manipulate import *
from SinGAN.training import *
from SinGAN.imresize import imresize
import SinGAN.functions as functions
if __name__ == '__main__':
parser = get_arguments()
parser.add_argument('--input_dir', help='input image dir', default='Input/Images')
parser.add_argument('--input_name', help='training image name', default="33039_LR.png")#required=True)
parser.add_argument('--sr_factor', help='super resolution factor', type=float, default=4)
parser.add_argument('--mode', help='task to be done', default='SR')
opt = parser.parse_args()
opt = functions.post_config(opt)
Gs = []
Zs = []
reals = []
NoiseAmp = []
dir2save = functions.generate_dir2save(opt)
if dir2save is None:
print('task does not exist')
#elif (os.path.exists(dir2save)):
# print("output already exist")
else:
try:
os.makedirs(dir2save)
except OSError:
pass
mode = opt.mode
in_scale, iter_num = functions.calc_init_scale(opt)
opt.scale_factor = 1 / in_scale
opt.scale_factor_init = 1 / in_scale
opt.mode = 'train'
dir2trained_model = functions.generate_dir2save(opt)
if (os.path.exists(dir2trained_model)):
Gs, Zs, reals, NoiseAmp = functions.load_trained_pyramid(opt)
opt.mode = mode
else:
print('*** Train SinGAN for SR ***')
real = functions.read_image(opt)
opt.min_size = 18
real = functions.adjust_scales2image_SR(real, opt)
train(opt, Gs, Zs, reals, NoiseAmp)
opt.mode = mode
print('%f' % pow(in_scale, iter_num))
Zs_sr = []
reals_sr = []
NoiseAmp_sr = []
Gs_sr = []
real = reals[-1] # read_image(opt)
real_ = real
opt.scale_factor = 1 / in_scale
opt.scale_factor_init = 1 / in_scale
for j in range(1, iter_num + 1, 1):
real_ = imresize(real_, pow(1 / opt.scale_factor, 1), opt)
reals_sr.append(real_)
Gs_sr.append(Gs[-1])
NoiseAmp_sr.append(NoiseAmp[-1])
z_opt = torch.full(real_.shape, 0, device=opt.device)
m = nn.ZeroPad2d(5)
z_opt = m(z_opt)
Zs_sr.append(z_opt)
out = SinGAN_generate(Gs_sr, Zs_sr, reals_sr, NoiseAmp_sr, opt, in_s=reals_sr[0], num_samples=1)
out = out[:, :, 0:int(opt.sr_factor * reals[-1].shape[2]), 0:int(opt.sr_factor * reals[-1].shape[3])]
dir2save = functions.generate_dir2save(opt)
plt.imsave('%s/%s_HR.png' % (dir2save,opt.input_name[:-4]), functions.convert_image_np(out.detach()), vmin=0, vmax=1)