-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdataset.py
executable file
·61 lines (44 loc) · 1.53 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import random
import torch
import numpy as np
from torch.utils.data import Dataset
from PIL import Image
from image import *
from torchvision import transforms
import time
import torchvision.transforms.functional as F
class listDataset(Dataset):
def __init__(self, root, shape=None, shuffle=True, transform=None, train=False, seen=0, batch_size=1, num_workers=4,drop_last=False):
if train:
# root =4*root
#random.shuffle(root)
self.batch_size = batch_size
else :
self.batch_size = 1
self.nSamples = len(root)
self.lines = root
self.transform = transform
self.train = train
self.shape = shape
self.seen = seen
self.drop_last = drop_last
self.num_workers = num_workers
def __len__(self):
return self.nSamples
def __getitem__(self, index):
assert index <= len(self), 'index range error'
#print(index)
img_path = self.lines[index]
fname = os.path.basename(img_path)
img,target,kpoint,sigma_map= load_data(img_path,self.train)
# img =self.lines[index]['img']
# target =self.lines[index]['gt']
# fname =self.lines[index]['fname']
# sigma_map = self.lines[index]['sigma']
# k = self.lines[index]['kpoint']
# loader = transforms.ToTensor()
# original_img = loader(img.copy())
if self.transform is not None:
img = self.transform(img)
return fname, img, target, kpoint, sigma_map