-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathconfig.py
153 lines (135 loc) · 7.39 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import argparse
parser = argparse.ArgumentParser(description='CLTR')
parser.add_argument('--dataset', type=str, default='jhu',
help='choice train dataset')
parser.add_argument('--save_path', type=str, default='save_file/A_ddp',
help='save checkpoint directory')
parser.add_argument('--workers', type=int, default=2,
help='load data workers')
parser.add_argument('--print_freq', type=int, default=200,
help='print frequency')
parser.add_argument('--start_epoch', type=int, default=0,
help='start epoch for training')
parser.add_argument('--epochs', type=int, default=5000,
help='end epoch for training')
parser.add_argument('--pre', type=str, default=None,
help='pre-trained model directory')
parser.add_argument('--batch_size', type=int, default=16,
help='input batch size for training')
parser.add_argument('--crop_size', type=int, default=256,
help='crop size for training')
parser.add_argument('--lr_step', type=int, default=1200,
help='lr_step')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--best_pred', type=int, default=1e5,
help='best pred')
parser.add_argument('--gpu_id', type=str, default='0,1',
help='gpu id')
parser.add_argument('--lr', type=float, default=1e-4,
help='learning rate')
parser.add_argument('--weight_decay', type=float, default=5 * 1e-4,
help='weight decay')
parser.add_argument('--save', action='store_true',
help='save the file')
parser.add_argument('--scale_aug', action='store_true',
help='using the scale augmentation')
parser.add_argument('--scale_type', type=int, default=0,
help='scale type')
parser.add_argument('--scale_p', type=float, default=0.3,
help='probability of scaling')
parser.add_argument('--gray_aug', action='store_true',
help='using the gray augmentation')
parser.add_argument('--gray_p', type=float, default=0.1,
help='probability of gray')
parser.add_argument('--test_patch', action='store_true',
help='true test_patch ')
parser.add_argument('--channel_point', type=int, default=3,
help='number of boxes')
parser.add_argument('--num_patch', type=int, default=1,
help='number of patches')
parser.add_argument('--min_num', type=int, default=-1,
help='min_num')
parser.add_argument('--num_knn', type=int, default=4,
help='number of knn')
parser.add_argument('--test_per_epoch', type=int, default=20,
help='test_per_epoch')
parser.add_argument('--threshold', type=float, default=0.35,
help='threshold to filter the negative points')
# video demo
parser.add_argument('--video_path', type=str, default='./video_demo/1.mp4',
help='input video path ')
# distributed training parameters
parser.add_argument('--local_rank', type=int, default=-1,
help='local local_rank')
parser.add_argument('--lr_backbone', default=1e-4, type=float)
parser.add_argument('--lr_drop', default=40, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=6, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=6, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_queries', default=500, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation, not used
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher,some parameters are not used here
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_point', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost") # not used
# * Loss coefficients, some parameters are not used here
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--count_loss_coef', default=2, type=float)
parser.add_argument('--point_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters, not used
parser.add_argument('--dataset_file', default='crowd_data')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env:// ', help='url used to set up distributed training')
parser.add_argument('--master_port', default=29501, type=int,
help='master_port')
args = parser.parse_args()
return_args = parser.parse_args()