-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
109 lines (79 loc) · 2.94 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import logging
import os
import random
import shutil
import cv2
import h5py
import numpy as np
import torch
from mmcv.utils import get_logger
from tqdm import tqdm
from image import load_data, load_data_test
def save_results(input_img, gt_data, density_map, output_dir, fname='results.png'):
density_map[density_map < 0] = 0
gt_data = 255 * gt_data / np.max(gt_data)
gt_data = gt_data[0][0]
gt_data = gt_data.astype(np.uint8)
gt_data = cv2.applyColorMap(gt_data, 2)
density_map = 255 * density_map / np.max(density_map)
density_map = density_map[0][0]
density_map = density_map.astype(np.uint8)
density_map = cv2.applyColorMap(density_map, 2)
result_img = np.hstack((gt_data, density_map))
cv2.imwrite(os.path.join('.', output_dir, fname).replace('.jpg', '.jpg'), result_img)
def save_net(fname, net):
with h5py.File(fname, 'w') as h5f:
for k, v in net.state_dict().items():
h5f.create_dataset(k, data=v.cpu().numpy())
def load_net(fname, net):
with h5py.File(fname, 'r') as h5f:
for k, v in net.state_dict().items():
param = torch.from_numpy(np.asarray(h5f[k]))
v.copy_(param)
def save_checkpoint(state, visi, is_best, save_path, filename='checkpoint.pth'):
torch.save(state, './' + str(save_path) + '/' + filename)
if is_best:
shutil.copyfile('./' + str(save_path) + '/' + filename, './' + str(save_path) + '/' + 'model_best.pth')
for i in range(len(visi)):
img = visi[i][0]
output = visi[i][1]
target = visi[i][2]
fname = visi[i][3]
save_results(img, target, output, str(save_path), fname[0])
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False # 输入固定情况下用true
def get_root_logger(log_file=None, log_level=logging.INFO):
"""Get root logger.
Args:
log_file (str, optional): File path of log. Defaults to None.
log_level (int, optional): The level of logger.
Defaults to logging.INFO.
Returns:
:obj:`logging.Logger`: The obtained logger
"""
logger = get_logger(name='CLTR', log_file=log_file, log_level=log_level)
return logger
def pre_data_test(train_list, args, train):
data_keys = {}
count = 0
for j in tqdm(range(len(train_list))):
Img_path = train_list[j]
# Img_path = '../datasets/NWPU_localization/val_data_ori/3234.jpg'
fname = os.path.basename(Img_path)
# print(fname)
img = load_data_test(Img_path, args, train)
# print(img.size, fidt_map.shape)
blob = {}
blob['img'] = img
blob['fname'] = fname
data_keys[count] = blob
count += 1
# if count >10:
# break
return data_keys