forked from hashicorp/vault
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcache.go
219 lines (184 loc) · 4.92 KB
/
cache.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
package physical
import (
"context"
"sync/atomic"
log "github.com/hashicorp/go-hclog"
"github.com/hashicorp/golang-lru"
"github.com/hashicorp/vault/helper/locksutil"
"github.com/hashicorp/vault/helper/pathmanager"
)
const (
// DefaultCacheSize is used if no cache size is specified for NewCache
DefaultCacheSize = 128 * 1024
)
// These paths don't need to be cached by the LRU cache. This should
// particularly help memory pressure when unsealing.
var cacheExceptionsPaths = []string{
"wal/logs/",
"index/pages/",
"index-dr/pages/",
"sys/expire/",
"core/poison-pill",
}
// Cache is used to wrap an underlying physical backend
// and provide an LRU cache layer on top. Most of the reads done by
// Vault are for policy objects so there is a large read reduction
// by using a simple write-through cache.
type Cache struct {
backend Backend
lru *lru.TwoQueueCache
locks []*locksutil.LockEntry
logger log.Logger
enabled *uint32
cacheExceptions *pathmanager.PathManager
}
// TransactionalCache is a Cache that wraps the physical that is transactional
type TransactionalCache struct {
*Cache
Transactional
}
// Verify Cache satisfies the correct interfaces
var _ ToggleablePurgemonster = (*Cache)(nil)
var _ ToggleablePurgemonster = (*TransactionalCache)(nil)
var _ Backend = (*Cache)(nil)
var _ Transactional = (*TransactionalCache)(nil)
// NewCache returns a physical cache of the given size.
// If no size is provided, the default size is used.
func NewCache(b Backend, size int, logger log.Logger) *Cache {
if logger.IsDebug() {
logger.Debug("creating LRU cache", "size", size)
}
if size <= 0 {
size = DefaultCacheSize
}
pm := pathmanager.New()
pm.AddPaths(cacheExceptionsPaths)
cache, _ := lru.New2Q(size)
c := &Cache{
backend: b,
lru: cache,
locks: locksutil.CreateLocks(),
logger: logger,
// This fails safe.
enabled: new(uint32),
cacheExceptions: pm,
}
return c
}
func NewTransactionalCache(b Backend, size int, logger log.Logger) *TransactionalCache {
c := &TransactionalCache{
Cache: NewCache(b, size, logger),
Transactional: b.(Transactional),
}
return c
}
func (c *Cache) shouldCache(key string) bool {
if atomic.LoadUint32(c.enabled) == 0 {
return false
}
return !c.cacheExceptions.HasPath(key)
}
// SetEnabled is used to toggle whether the cache is on or off. It must be
// called with true to actually activate the cache after creation.
func (c *Cache) SetEnabled(enabled bool) {
if enabled {
atomic.StoreUint32(c.enabled, 1)
return
}
atomic.StoreUint32(c.enabled, 0)
}
// Purge is used to clear the cache
func (c *Cache) Purge(ctx context.Context) {
// Lock the world
for _, lock := range c.locks {
lock.Lock()
defer lock.Unlock()
}
c.lru.Purge()
}
func (c *Cache) Put(ctx context.Context, entry *Entry) error {
if entry != nil && !c.shouldCache(entry.Key) {
return c.backend.Put(ctx, entry)
}
lock := locksutil.LockForKey(c.locks, entry.Key)
lock.Lock()
defer lock.Unlock()
err := c.backend.Put(ctx, entry)
if err == nil {
c.lru.Add(entry.Key, entry)
}
return err
}
func (c *Cache) Get(ctx context.Context, key string) (*Entry, error) {
if !c.shouldCache(key) {
return c.backend.Get(ctx, key)
}
lock := locksutil.LockForKey(c.locks, key)
lock.RLock()
defer lock.RUnlock()
// Check the LRU first
if raw, ok := c.lru.Get(key); ok {
if raw == nil {
return nil, nil
}
return raw.(*Entry), nil
}
// Read from the underlying backend
ent, err := c.backend.Get(ctx, key)
if err != nil {
return nil, err
}
// Cache the result
c.lru.Add(key, ent)
return ent, nil
}
func (c *Cache) Delete(ctx context.Context, key string) error {
if !c.shouldCache(key) {
return c.backend.Delete(ctx, key)
}
lock := locksutil.LockForKey(c.locks, key)
lock.Lock()
defer lock.Unlock()
err := c.backend.Delete(ctx, key)
if err == nil {
c.lru.Remove(key)
}
return err
}
func (c *Cache) List(ctx context.Context, prefix string) ([]string, error) {
// Always pass-through as this would be difficult to cache. For the same
// reason we don't lock as we can't reasonably know which locks to readlock
// ahead of time.
return c.backend.List(ctx, prefix)
}
func (c *TransactionalCache) Transaction(ctx context.Context, txns []*TxnEntry) error {
// Bypass the locking below
if atomic.LoadUint32(c.enabled) == 0 {
return c.Transactional.Transaction(ctx, txns)
}
// Collect keys that need to be locked
var keys []string
for _, curr := range txns {
keys = append(keys, curr.Entry.Key)
}
// Lock the keys
for _, l := range locksutil.LocksForKeys(c.locks, keys) {
l.Lock()
defer l.Unlock()
}
if err := c.Transactional.Transaction(ctx, txns); err != nil {
return err
}
for _, txn := range txns {
if !c.shouldCache(txn.Entry.Key) {
continue
}
switch txn.Operation {
case PutOperation:
c.lru.Add(txn.Entry.Key, txn.Entry)
case DeleteOperation:
c.lru.Remove(txn.Entry.Key)
}
}
return nil
}