Skip to content

Latest commit

 

History

History
39 lines (28 loc) · 1.47 KB

File metadata and controls

39 lines (28 loc) · 1.47 KB

Image Classification on ImageNet

Inference/Calibration Tutorial

Float32 Inference

python verify_pretrained.py --model=resnet50_v1d_0.11 --batch-size=1

Calibration

Naive calibrate model by using 5 batch data (32 images per batch). Quantized model will be saved into ./model/.

python verify_pretrained.py --model=resnet50_v1d_0.11 --batch-size=32 --calibration

INT8 Inference

python verify_pretrained.py --model=resnet50_v1d_0.11 --batch-size=1 --deploy --model-prefix=./model/resnet50_v1d_0.11-quantized-naive

Performance

model f32 latency(ms) s8 latency(ms) f32 throughput(fps, BS=64) s8 throughput(fps, BS=64) f32 accuracy s8 accuracy
resnet50_v1 11.36 2.54 190.2 1363.75 77.21/93.56 76.34/93.13
resnet50_v1d_0.11 8.84 1.74 1070.66 10686.77 63.06/84.64 62.68/84.43
mobilenet1.0 3.88 0.88 583.05 5615.58 73.28/91.22 72.23/90.64
mobilenetv2_1.0 18.10 1.34 226.27 5005.94 71.89/90.53 70.87/89.88
squeezenet1.0 4.18 0.96 590.76 3393.09 57.74/80.33 56.98/79.66
squeezenet1.1 3.31 0.87 964.83 6027.15 58.00/80.47 57.02/79.73
inceptionv3 20.73 4.99 156.63 917.67 78.80/94.37 77.36/93.57
vgg16 16.71 7.63 87.17 399.62 73.06/91.18 71.94/90.59

Please refer to GluonCV Model Zoo for available pretrained models, training hyper-parameters, etc.