-
Notifications
You must be signed in to change notification settings - Fork 1.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add ir-csn-152 into torchvideo model zoo (#1515)
- Loading branch information
Showing
1 changed file
with
196 additions
and
0 deletions.
There are no files selected for viewing
196 changes: 196 additions & 0 deletions
196
gluoncv/torch/model_zoo/action_recognition/ir_CSN_152.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
""" | ||
Video Classification with Channel-Separated Convolutional Networks | ||
ICCV 2019, https://arxiv.org/abs/1904.02811 | ||
""" | ||
|
||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
__all__ = ['ir_csn_resnet152_kinetics400'] | ||
|
||
|
||
eps = 1e-3 | ||
bn_mmt = 0.1 | ||
|
||
|
||
class Affine(nn.Module): | ||
def __init__(self, feature_in): | ||
super(Affine, self).__init__() | ||
self.weight = nn.Parameter(torch.randn(feature_in, 1, 1, 1)) | ||
self.bias = nn.Parameter(torch.randn(feature_in,1, 1, 1)) | ||
self.weight.requires_grad = False | ||
self.bias.requires_grad = False | ||
|
||
def forward(self, x): | ||
x = x * self.weight + self.bias | ||
return x | ||
|
||
|
||
class ResNeXtBottleneck(nn.Module): | ||
# expansion = 2 | ||
|
||
def __init__(self, in_planes, planes, stride=1, temporal_stride=1, | ||
down_sample=None, expansion=2, temporal_kernel=3, use_affine=True): | ||
|
||
super(ResNeXtBottleneck, self).__init__() | ||
self.expansion = expansion | ||
self.conv1 = nn.Conv3d(in_planes, planes, kernel_size=(1, 1, 1), bias=False, stride=(1, 1, 1)) | ||
|
||
if use_affine: | ||
self.bn1 = Affine(planes) | ||
else: | ||
self.bn1 = nn.BatchNorm3d(planes, track_running_stats=True, eps=eps, momentum=bn_mmt) | ||
|
||
self.conv3 = nn.Conv3d(planes, planes, kernel_size=(3, 3, 3), bias=False, | ||
stride=(temporal_stride, stride, stride), | ||
padding=((temporal_kernel - 1) // 2, 1, 1), | ||
groups=planes) | ||
|
||
if use_affine: | ||
self.bn3 = Affine(planes) | ||
else: | ||
self.bn3 = nn.BatchNorm3d(planes, track_running_stats=True, eps=eps, momentum=bn_mmt) | ||
|
||
self.conv4 = nn.Conv3d( | ||
planes, planes * self.expansion, kernel_size=1, bias=False) | ||
|
||
if use_affine: | ||
self.bn4 = Affine(planes * self.expansion) | ||
else: | ||
self.bn4 = nn.BatchNorm3d(planes * self.expansion, track_running_stats=True, eps=eps, momentum=bn_mmt) | ||
|
||
self.relu = nn.ReLU(inplace=True) | ||
self.down_sample = down_sample | ||
self.stride = stride | ||
|
||
def forward(self, x): | ||
residual = x | ||
|
||
out = self.conv1(x) | ||
out = self.bn1(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv3(out) | ||
out = self.bn3(out) | ||
out = self.relu(out) | ||
|
||
out = self.conv4(out) | ||
out = self.bn4(out) | ||
|
||
if self.down_sample is not None: | ||
residual = self.down_sample(x) | ||
|
||
out += residual | ||
out = self.relu(out) | ||
|
||
return out | ||
|
||
|
||
class ResNeXt(nn.Module): | ||
def __init__(self, | ||
block, | ||
block_nums, | ||
num_classes=400, | ||
use_affine=True): | ||
|
||
self.use_affine = use_affine | ||
self.in_planes = 64 | ||
self.num_classes = num_classes | ||
|
||
super(ResNeXt, self).__init__() | ||
|
||
self.conv1 = nn.Conv3d( | ||
3, | ||
64, | ||
kernel_size=(3, 7, 7), | ||
stride=(1, 2, 2), | ||
padding=(1, 3, 3), | ||
bias=False) | ||
if use_affine: | ||
self.bn1 = Affine(64) | ||
else: | ||
self.bn1 = nn.BatchNorm3d(64, track_running_stats=True, eps=eps, momentum=bn_mmt) | ||
|
||
self.relu = nn.ReLU(inplace=True) | ||
self.maxpool = nn.MaxPool3d(kernel_size=(1, 3, 3), stride=(1, 2, 2), padding=(0, 1, 1)) | ||
|
||
self.layer1 = self._make_layer(block, in_planes=64, planes=64, blocks=block_nums[0], | ||
stride=1, expansion=4) | ||
|
||
self.layer2 = self._make_layer(block, in_planes=256, planes=128, blocks=block_nums[1], | ||
stride=2, temporal_stride=2, expansion=4) | ||
|
||
self.layer3 = self._make_layer(block, in_planes=512, planes=256, blocks=block_nums[2], | ||
stride=2, temporal_stride=2, expansion=4) | ||
|
||
self.layer4 = self._make_layer(block, in_planes=1024, planes=512, blocks=block_nums[3], | ||
stride=2, temporal_stride=2, expansion=4) | ||
|
||
self.avgpool = nn.AdaptiveAvgPool3d(output_size=(1, 1, 1)) | ||
|
||
self.out_fc = nn.Linear(in_features=2048, out_features=num_classes) | ||
|
||
def _make_layer(self, | ||
block, | ||
in_planes, | ||
planes, | ||
blocks, | ||
stride=1, | ||
temporal_stride=1, | ||
expansion=4): | ||
|
||
if self.use_affine: | ||
down_bn = Affine(planes * expansion) | ||
else: | ||
down_bn = nn.BatchNorm3d(planes * expansion, track_running_stats=True, eps=eps, momentum=bn_mmt) | ||
down_sample = nn.Sequential( | ||
nn.Conv3d( | ||
in_planes, | ||
planes * expansion, | ||
kernel_size=1, | ||
stride=(temporal_stride, stride, stride), | ||
bias=False), down_bn) | ||
layers = [] | ||
layers.append( | ||
block(in_planes, planes, stride, temporal_stride, down_sample, expansion, | ||
temporal_kernel=3, use_affine=self.use_affine)) | ||
for i in range(1, blocks): | ||
layers.append(block(planes * expansion, planes, expansion=expansion, | ||
temporal_kernel=3, use_affine=self.use_affine)) | ||
|
||
return nn.Sequential(*layers) | ||
|
||
def forward(self, x): | ||
|
||
bs, _, _, _, _ = x.size() | ||
|
||
x = self.conv1(x) | ||
x = self.bn1(x) | ||
x = self.relu(x) | ||
x = self.maxpool(x) | ||
|
||
x = self.layer1(x) | ||
x = self.layer2(x) | ||
x = self.layer3(x) | ||
x = self.layer4(x) | ||
|
||
x = self.avgpool(x) | ||
x = x.view(bs, -1) | ||
logits = self.out_fc(x) | ||
|
||
return logits | ||
|
||
|
||
def ir_csn_resnet152_kinetics400(cfg): | ||
model = ResNeXt(ResNeXtBottleneck, | ||
num_classes=cfg.CONFIG.DATA.NUM_CLASSES, | ||
block_nums=[3, 8, 36, 3], | ||
use_affine=cfg.CONFIG.MODEL.USE_AFFINE) | ||
|
||
if cfg.CONFIG.MODEL.PRETRAINED: | ||
from ..model_store import get_model_file | ||
model.load_state_dict(torch.load(get_model_file('ir_csn_resnet152_kinetics400', | ||
tag=cfg.CONFIG.MODEL.PRETRAINED))) | ||
|
||
return model |