Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix imports #1499

Merged
merged 9 commits into from
Nov 5, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions gluoncv/auto/estimators/center_net/center_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -210,8 +210,7 @@ def _evaluate(self, val_data):
mx.nd.waitall()
self.net.hybridize()
if not isinstance(val_data, gluon.data.DataLoader):
from ...tasks.dataset import ObjectDetectionDataset
if isinstance(val_data, ObjectDetectionDataset):
if hasattr(val_data, 'to_mxnet'):
val_data = val_data.to_mxnet()
val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
width, height = self._cfg.center_net.data_shape
Expand Down
2 changes: 2 additions & 0 deletions gluoncv/auto/estimators/faster_rcnn/default.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,6 +161,8 @@ class TrainCfg:

@dataclass
class ValidCfg:
# Batch size during training
batch_size : int = 1
# Filter top proposals before NMS in testing of RPN.
rpn_test_pre_nms : int = 6000
# Return top proposal results after NMS in testing of RPN.
Expand Down
11 changes: 5 additions & 6 deletions gluoncv/auto/estimators/faster_rcnn/faster_rcnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
import mxnet as mx
from mxnet import gluon

from ....data.batchify import Tuple
from ....data.batchify import Tuple, Append
from ....data.transforms.presets.rcnn import load_test, transform_test
from ....data.transforms.presets.rcnn import FasterRCNNDefaultTrainTransform, FasterRCNNDefaultValTransform
from ....model_zoo import get_model
Expand Down Expand Up @@ -219,16 +219,15 @@ def _evaluate(self, val_data):
"""Evaluate on validation dataset."""
clipper = BBoxClipToImage()
if not isinstance(val_data, gluon.data.DataLoader):
from ...tasks.dataset import ObjectDetectionDataset
if isinstance(val_data, ObjectDetectionDataset):
if hasattr(val_data, 'to_mxnet'):
val_data = val_data.to_mxnet()
val_bfn = Tuple(*[Append() for _ in range(3)])
short = net.short[-1] if isinstance(net.short, (tuple, list)) else net.short
short = self.net.short[-1] if isinstance(self.net.short, (tuple, list)) else self.net.short
# validation use 1 sample per device
val_data = gluon.data.DataLoader(
val_data.transform(FasterRcnnDefaultValTransform(short, net.max_size)),
val_data.transform(FasterRCNNDefaultValTransform(short, self.net.max_size)),
len(self.ctx), False, batchify_fn=val_bfn, last_batch='keep',
num_workers=self._cfg.valid.num_workers)
num_workers=self._cfg.num_workers)
if self._cfg.valid.metric == 'voc07':
eval_metric = VOC07MApMetric(iou_thresh=self._cfg.valid.iou_thresh, class_names=self.classes)
elif self._cfg.valid.metric == 'voc':
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -316,10 +316,11 @@ def _evaluate(self, val_data):
acc_top1 = mx.metric.Accuracy()
acc_top5 = mx.metric.TopKAccuracy(min(5, self.num_class))

if not isinstance(val_data, (gluon.data.DataLoader, mx.io.ImageRecordIter)):
from ...tasks.dataset import ImageClassificationDataset
if isinstance(val_data, ImageClassificationDataset):
if not isinstance(val_data, (gluon.data.DataLoader, mx.io.MXDataIter)):
if hasattr(val_data, 'to_mxnet'):
val_data = val_data.to_mxnet()
resize = int(math.ceil(self.input_size / self._cfg.train.crop_ratio))
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
transform_test = transforms.Compose([
transforms.Resize(resize, keep_ratio=True),
transforms.CenterCrop(self.input_size),
Expand Down
1 change: 0 additions & 1 deletion gluoncv/auto/estimators/image_classification/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,6 @@ def get_data_loader(data_dir, batch_size, num_workers, input_size, crop_ratio, t
normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
jitter_param = 0.4
lighting_param = 0.1
input_size = input_size
crop_ratio = crop_ratio if crop_ratio > 0 else 0.875
resize = int(math.ceil(input_size / crop_ratio))

Expand Down
2 changes: 2 additions & 0 deletions gluoncv/auto/estimators/ssd/default.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,8 @@ class TrainCfg:

@dataclass
class ValidCfg:
# Batch size during training
batch_size : int = 16
# Epoch interval for validation
val_interval : int = 1
# metric, 'voc', 'voc07'
Expand Down
8 changes: 4 additions & 4 deletions gluoncv/auto/estimators/ssd/ssd.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
from ....utils.metrics.voc_detection import VOC07MApMetric, VOCMApMetric
from ....model_zoo import get_model
from ....model_zoo import custom_ssd
from ....data.transforms.presets.ssd import SSDDefaultValTransform
from ....data.transforms.presets.ssd import load_test, transform_test
from ....loss import SSDMultiBoxLoss
from .utils import _get_dataloader, _get_dali_dataloader
Expand Down Expand Up @@ -204,14 +205,13 @@ def _train_loop(self, train_data, val_data, train_eval_data):
def _evaluate(self, val_data):
"""Evaluate on validation dataset."""
if not isinstance(val_data, gluon.data.DataLoader):
from ...tasks.dataset import ObjectDetectionDataset
if isinstance(val_data, ObjectDetectionDataset):
if hasattr(val_data, 'to_mxnet'):
val_data = val_data.to_mxnet()
val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
val_data = gluon.data.DataLoader(
val_data.transform(SSDDefaultValTransform(width, height)),
val_data.transform(SSDDefaultValTransform(self._cfg.ssd.data_shape, self._cfg.ssd.data_shape)),
self._cfg.valid.batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep',
num_workers=self._cfg.valid.num_workers)
num_workers=self._cfg.num_workers)
if self._cfg.valid.metric == 'voc07':
eval_metric = VOC07MApMetric(iou_thresh=self._cfg.valid.iou_thresh, class_names=self.classes)
elif self._cfg.valid.metric == 'voc':
Expand Down
2 changes: 2 additions & 0 deletions gluoncv/auto/estimators/yolo/default.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,8 @@ class TrainCfg:

@dataclass
class ValidCfg:
# Batch size during training
batch_size : int = 16
# Epoch interval for validation, increase the number
# will reduce the training time if validation is slow.
val_interval : int = 1
Expand Down
8 changes: 4 additions & 4 deletions gluoncv/auto/estimators/yolo/yolo.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@

from .... import utils as gutils
from ....data.batchify import Tuple, Stack, Pad
from ....data.transforms.presets.yolo import YOLO3DefaultValTransform
from ....data.transforms.presets.yolo import load_test, transform_test
from ....model_zoo import get_model
from ....model_zoo import custom_yolov3
Expand Down Expand Up @@ -202,14 +203,13 @@ def _train_loop(self, train_data, val_data, train_eval_data):
def _evaluate(self, val_data):
"""Evaluate the current model on dataset."""
if not isinstance(val_data, gluon.data.DataLoader):
from ...tasks.dataset import ObjectDetectionDataset
if isinstance(val_data, ObjectDetectionDataset):
if hasattr(val_data, 'to_mxnet'):
val_data = val_data.to_mxnet()
val_batchify_fn = Tuple(Stack(), Pad(pad_val=-1))
val_data = gluon.data.DataLoader(
val_data.transform(SSDDefaultValTransform(width, height)),
val_data.transform(YOLO3DefaultValTransform(self._cfg.yolo3.data_shape, self._cfg.yolo3.data_shape)),
self._cfg.valid.batch_size, False, batchify_fn=val_batchify_fn, last_batch='keep',
num_workers=self._cfg.valid.num_workers)
num_workers=self._cfg.num_workers)
if self._cfg.valid.metric == 'voc07':
eval_metric = VOC07MApMetric(iou_thresh=self._cfg.valid.iou_thresh, class_names=self.classes)
elif self._cfg.valid.metric == 'voc':
Expand Down
5 changes: 5 additions & 0 deletions tests/auto/test_auto_estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ def test_image_classification_estimator():
res = est.fit(IMAGE_CLASS_DATASET)
assert res.get('valid_acc', 0) > 0
test_result = est.predict(IMAGE_CLASS_TEST)
evaluate_result = est.evaluate(IMAGE_CLASS_TEST)

def test_center_net_estimator():
from gluoncv.auto.estimators import CenterNetEstimator
Expand All @@ -39,6 +40,7 @@ def test_center_net_estimator():
assert res.get('valid_map', 0) > 0
_, _, test_data = OBJECT_DETCTION_DATASET.random_split()
test_result = est.predict(test_data)
evaluate_result = est.evaluate(test_data)

def test_ssd_estimator():
from gluoncv.auto.estimators import SSDEstimator
Expand All @@ -47,6 +49,7 @@ def test_ssd_estimator():
assert res.get('valid_map', 0) > 0
_, _, test_data = OBJECT_DETCTION_DATASET.random_split()
test_result = est.predict(test_data)
evaluate_result = est.evaluate(test_data)

def test_yolo3_estimator():
from gluoncv.auto.estimators import YOLOv3Estimator
Expand All @@ -55,6 +58,7 @@ def test_yolo3_estimator():
assert res.get('valid_map', 0) > 0
_, _, test_data = OBJECT_DETCTION_DATASET.random_split()
test_result = est.predict(test_data)
evaluate_result = est.evaluate(test_data)

def test_frcnn_estimator():
from gluoncv.auto.estimators import FasterRCNNEstimator
Expand All @@ -63,6 +67,7 @@ def test_frcnn_estimator():
assert res.get('valid_map', 0) > 0
_, _, test_data = OBJECT_DETCTION_DATASET.random_split()
test_result = est.predict(test_data)
evaluate_result = est.evaluate(test_data)

if __name__ == '__main__':
import nose
Expand Down