-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy patharm_cpu_imagenet_bench.py
121 lines (103 loc) · 4.19 KB
/
arm_cpu_imagenet_bench.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Benchmark script for ImageNet models on ARM CPU.
see README.md for the usage and results of this script.
"""
import argparse
import numpy as np
import tvm
from tvm import te
from tvm.contrib.utils import tempdir
import tvm.contrib.graph_executor as runtime
from tvm import relay
from util import get_network, print_progress
def evaluate_network(network, target, target_host, repeat):
# connect to remote device
tracker = tvm.rpc.connect_tracker(args.host, args.port)
remote = tracker.request(args.rpc_key)
print_progress(network)
net, params, input_shape, output_shape = get_network(network, batch_size=1)
print_progress("%-20s building..." % network)
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(net, target=tvm.target.Target(target, host=target_host), params=params)
tmp = tempdir()
if "android" in str(target):
from tvm.contrib import ndk
filename = "%s.so" % network
lib.export_library(tmp.relpath(filename), fcompile=ndk.create_shared)
else:
filename = "%s.tar" % network
lib.export_library(tmp.relpath(filename))
# upload library and params
print_progress("%-20s uploading..." % network)
dev = remote.device(str(target), 0)
remote.upload(tmp.relpath(filename))
rlib = remote.load_module(filename)
module = runtime.GraphModule(rlib["default"](dev))
data_tvm = tvm.nd.array((np.random.uniform(size=input_shape)).astype(dtype))
module.set_input("data", data_tvm)
# evaluate
print_progress("%-20s evaluating..." % network)
ftimer = module.module.time_evaluator("run", dev, number=1, repeat=repeat)
prof_res = np.array(ftimer().results) * 1000 # multiply 1000 for converting to millisecond
print(
"%-20s %-19s (%s)" % (network, "%.2f ms" % np.mean(prof_res), "%.2f ms" % np.std(prof_res))
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--network",
type=str,
choices=[
"resnet-18",
"resnet-34",
"resnet-50",
"vgg-16",
"vgg-19",
"densenet-121",
"inception_v3",
"mobilenet",
"squeezenet_v1.0",
"squeezenet_v1.1",
],
help="The name of neural network",
)
parser.add_argument(
"--model",
type=str,
choices=["rk3399", "mate10", "mate10pro", "p20", "p20pro", "pixel2", "rasp3b", "pynq"],
default="rk3399",
help="The model of the test device. If your device is not listed in "
"the choices list, pick the most similar one as argument.",
)
parser.add_argument("--host", type=str, default="127.0.0.1")
parser.add_argument("--port", type=int, default=9190)
parser.add_argument("--rpc-key", type=str, required=True)
parser.add_argument("--repeat", type=int, default=10)
args = parser.parse_args()
dtype = "float32"
if args.network is None:
networks = ["squeezenet_v1.1", "mobilenet", "resnet-18", "vgg-16"]
else:
networks = [args.network]
target = tvm.target.arm_cpu(model=args.model)
target_host = None
print("--------------------------------------------------")
print("%-20s %-20s" % ("Network Name", "Mean Inference Time (std dev)"))
print("--------------------------------------------------")
for network in networks:
evaluate_network(network, target, target_host, args.repeat)