diff --git a/python-package/xgboost/core.py b/python-package/xgboost/core.py index 86c49e0ff377..d41976e8bc7c 100644 --- a/python-package/xgboost/core.py +++ b/python-package/xgboost/core.py @@ -1623,7 +1623,7 @@ def __init__( ) for d in cache: # Validate feature only after the feature names are saved into booster. - self._validate_dmatrix_features(d) + self._assign_dmatrix_features(d) if isinstance(model_file, Booster): assert self.handle is not None @@ -1746,6 +1746,11 @@ def __setstate__(self, state: Dict) -> None: self.__dict__.update(state) def __getitem__(self, val: Union[int, tuple, slice]) -> "Booster": + """Get a slice of the tree-based model. + + .. versionadded:: 1.3.0 + + """ if isinstance(val, int): val = slice(val, val + 1) if isinstance(val, tuple): @@ -1784,6 +1789,11 @@ def __getitem__(self, val: Union[int, tuple, slice]) -> "Booster": return sliced def __iter__(self) -> Generator["Booster", None, None]: + """Iterator method for getting individual trees. + + .. versionadded:: 2.0.0 + + """ for i in range(0, self.num_boosted_rounds()): yield self[i] @@ -1994,7 +2004,7 @@ def update( """ if not isinstance(dtrain, DMatrix): raise TypeError(f"invalid training matrix: {type(dtrain).__name__}") - self._validate_dmatrix_features(dtrain) + self._assign_dmatrix_features(dtrain) if fobj is None: _check_call( @@ -2026,7 +2036,7 @@ def boost(self, dtrain: DMatrix, grad: np.ndarray, hess: np.ndarray) -> None: raise ValueError(f"grad / hess length mismatch: {len(grad)} / {len(hess)}") if not isinstance(dtrain, DMatrix): raise TypeError(f"invalid training matrix: {type(dtrain).__name__}") - self._validate_dmatrix_features(dtrain) + self._assign_dmatrix_features(dtrain) _check_call( _LIB.XGBoosterBoostOneIter( @@ -2067,7 +2077,7 @@ def eval_set( raise TypeError(f"expected DMatrix, got {type(d[0]).__name__}") if not isinstance(d[1], str): raise TypeError(f"expected string, got {type(d[1]).__name__}") - self._validate_dmatrix_features(d[0]) + self._assign_dmatrix_features(d[0]) dmats = c_array(ctypes.c_void_p, [d[0].handle for d in evals]) evnames = c_array(ctypes.c_char_p, [c_str(d[1]) for d in evals]) @@ -2119,7 +2129,7 @@ def eval(self, data: DMatrix, name: str = "eval", iteration: int = 0) -> str: result: str Evaluation result string. """ - self._validate_dmatrix_features(data) + self._assign_dmatrix_features(data) return self.eval_set([(data, name)], iteration) # pylint: disable=too-many-function-args @@ -2218,7 +2228,8 @@ def predict( if not isinstance(data, DMatrix): raise TypeError("Expecting data to be a DMatrix object, got: ", type(data)) if validate_features: - self._validate_dmatrix_features(data) + fn = data.feature_names + self._validate_features(fn) args = { "type": 0, "training": training, @@ -2843,14 +2854,13 @@ def trees_to_dataframe(self, fmap: Union[str, os.PathLike] = "") -> DataFrame: # pylint: disable=no-member return df.sort(["Tree", "Node"]).reset_index(drop=True) - def _validate_dmatrix_features(self, data: DMatrix) -> None: + def _assign_dmatrix_features(self, data: DMatrix) -> None: if data.num_row() == 0: return fn = data.feature_names ft = data.feature_types - # Be consistent with versions before 1.7, "validate" actually modifies the - # booster. + if self.feature_names is None: self.feature_names = fn if self.feature_types is None: