-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path2-16_ggplot2_practicals_answers.qmd
224 lines (152 loc) · 5.86 KB
/
2-16_ggplot2_practicals_answers.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
## ggplot: Answers {.unnumbered}
::: callout-warning
Make sure that you try the exercises yourself first before looking at the answers
:::
::: panel-tabset
### Question 1
Explore the data set using dim(), str() and help(), which variables are continuous, which variables are discrete? Is this data set ready for plotting with ggplot?
### Answer 1
Explore the data set using dim(), str() and help(), which variables are continuous, which variables are discrete? Is this data set ready for plotting with ggplot?
```{r, eval=F}
dim(diamonds)
str(diamonds)
help(diamonds)
```
:::
::: panel-tabset
### Question 2
Use ggplot to plot a scatterplot of the relationship between the diamonds' carat and their price
### Answer 2
Use ggplot to plot a scatterplot of the relationship between the diamonds' carat and their price
```{r, eval=F}
ggplot() + geom_point(data=diamonds, aes(x=carat, y=price))
#or
ggplot(diamonds) + geom_point(aes(x=carat, y=price))
#or
ggplot(diamonds, aes(x=carat, y=price)) + geom_point()
```
Cut, color, and clarity are factors, and therefore discrete. The others are numeric continuous variables.
:::
::: panel-tabset
### Question 3
Make all dots darkblue and set the alpha value to 0.1
### Answer 3
Make all dots darkblue and set the alpha value to 0.1
```{r, eval=F}
ggplot(diamonds, aes(x=carat, y=price)) + geom_point(color="darkblue", alpha=0.1)
```
:::
::: panel-tabset
### Question 4
Visualize the influence of the color of a diamond on its price by mapping the diamond color to the color aesthetic
### Answer 4
Visualize the influence of the color of a diamond on its price by mapping the diamond color to the color aesthetic
```{r, eval=F}
#The color of the dots will be overwritten if we specify it statically
#in the geom_point function itself
ggplot(diamonds, aes(x=carat, y=price, color=color)) + geom_point(alpha=0.1)
```
:::
::: panel-tabset
### Question 5
Use a ggplot barplot to visualize diamond clarity depending on color, map diamond color to x and diamond clarity to fill
### Answer 5
Use a ggplot barplot to visualize diamond clarity depending on color, map diamond color to x and diamond clarity to fill
```{r, eval=F}
ggplot(diamonds, aes(x=color, fill=clarity)) + geom_bar()
```
:::
::: panel-tabset
### Question 6
Create a boxplot of the carat of a diamond based on its clarity and add whiskers using stat_boxplot
### Answer 6
Create a boxplot of the carat of a diamond based on its clarity and add whiskers using stat_boxplot
```{r, eval=F}
ggplot(diamonds, aes(x=clarity, y=carat)) +
stat_boxplot(geom="errorbar", width=0.5) +
geom_boxplot()
```
:::
::: panel-tabset
### Question 7
Add a geom_point layer to the previous plot mapping the diamonds price to the color
### Answer 7
Add a geom_point layer to the previous plot mapping the diamonds price to the color
```{r, eval=F}
ggplot(diamonds, aes(x=clarity, y=carat)) +
stat_boxplot(geom="errorbar", width=0.5) +
geom_boxplot() +
geom_point(aes(color=price))
```
:::
::: panel-tabset
### Question 8
Create a histogram of the price of the diamonds and separate the histograms into facets using diamond color, choose a good binwith or number of bins
### Answer 8
Create a histogram of the price of the diamonds and separate the histograms into facets using diamond color, choose a good binwith or number of bins
```{r, eval=F}
ggplot(diamonds, aes(x=price)) +
geom_histogram(binwidth = 100) +
facet_grid(color ~ .)
```
:::
::: panel-tabset
### Question 9
Create a grid of facets of the same histogram by comparing both color and cut
### Answer 9
Create a grid of facets of the same histogram by comparing both color and cut
```{r, eval=F}
ggplot(diamonds, aes(x=price)) +
geom_histogram(binwidth = 100) +
facet_grid(color ~ cut)
```
:::
::: panel-tabset
### Question 10
Use `aggregate(diamonds, by = list(cut = diamonds$cut, color = diamonds$color), mean)` to calculate the mean of all variables by cut and color. Create a heatmap of the mean prices by cut and color using geom_tile
### Answer 10
Use `aggregate(diamonds, by = list(cut = diamonds$cut, color = diamonds$color), mean)` to calculate the mean of all variables by cut and color. Create a heatmap of the mean prices by cut and color using geom_tile
```{r, eval=F}
#Aggregate uses a function (in this case mean) to aggregate all variables
#in a given data.frame by a list of variables given in "by"
mean.price <- aggregate(diamonds, by = list(cut = diamonds$cut, color = diamonds$color), mean)
ggplot(mean.price, aes(x=cut, y=color, fill=price)) +
geom_tile()
```
:::
::: panel-tabset
### Question 11
Change the title of the heatmap to "Average prices"
### Answer 11
Change the title of the heatmap to "Average prices"
```{r, eval=F}
ggplot(mean.price, aes(x=cut, y=color, fill=price)) +
geom_tile() +
labs(title="Average prices")
```
:::
::: panel-tabset
### Question 12
Change the gradient of the fill scale using 'scale_fill_gradient2'. Have it go from darkblue to white to darkred, set the midpoint to 4500
### Answer 12
Change the gradient of the fill scale using 'scale_fill_gradient2'. Have it go from darkblue to white to darkred, set the midpoint to 4500
```{r, eval=F}
ggplot(mean.price, aes(x=cut, y=color, fill=price)) +
geom_tile() +
labs(title="Average prices") +
scale_fill_gradient2(low="darkblue", mid="white", high="darkred", midpoint = 4500)
```
:::
::: panel-tabset
### Question 13
Choose and add a theme to the heatmap, or create a theme yourself using the options listed at <http://ggplot2.tidyverse.org/reference/theme.html>
### Answer 13
Choose and add a theme to the heatmap, or create a theme yourself using the options listed at <http://ggplot2.tidyverse.org/reference/theme.html>
```{r, eval=F}
ggplot(mean.price, aes(x=cut, y=color, fill=price)) +
geom_tile() +
labs(title="Average prices") +
scale_fill_gradient2(low="darkblue", mid="white", high="darkred", midpoint = 4500) +
theme_minimal()
```
:::