-
Notifications
You must be signed in to change notification settings - Fork 135
/
test.py
116 lines (98 loc) · 4.44 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
import cv2
import onnx
import time
import argparse
from onnxsim import simplify
import torch
from utils.tool import *
from module.detector import Detector
if __name__ == '__main__':
# 指定训练配置文件
parser = argparse.ArgumentParser()
parser.add_argument('--yaml', type=str, default="", help='.yaml config')
parser.add_argument('--weight', type=str, default=None, help='.weight config')
parser.add_argument('--img', type=str, default='', help='The path of test image')
parser.add_argument('--thresh', type=float, default=0.65, help='The path of test image')
parser.add_argument('--onnx', action="store_true", default=False, help='Export onnx file')
parser.add_argument('--torchscript', action="store_true", default=False, help='Export torchscript file')
parser.add_argument('--cpu', action="store_true", default=False, help='Run on cpu')
opt = parser.parse_args()
assert os.path.exists(opt.yaml), "请指定正确的配置文件路径"
assert os.path.exists(opt.weight), "请指定正确的模型路径"
assert os.path.exists(opt.img), "请指定正确的测试图像路径"
# 选择推理后端
if opt.cpu:
print("run on cpu...")
device = torch.device("cpu")
else:
if torch.cuda.is_available():
print("run on gpu...")
device = torch.device("cuda")
else:
print("run on cpu...")
device = torch.device("cpu")
# 解析yaml配置文件
cfg = LoadYaml(opt.yaml)
print(cfg)
# 模型加载
print("load weight from:%s"%opt.weight)
model = Detector(cfg.category_num, True).to(device)
model.load_state_dict(torch.load(opt.weight, map_location=device))
#sets the module in eval node
model.eval()
# 数据预处理
ori_img = cv2.imread(opt.img)
res_img = cv2.resize(ori_img, (cfg.input_width, cfg.input_height), interpolation = cv2.INTER_LINEAR)
img = res_img.reshape(1, cfg.input_height, cfg.input_width, 3)
img = torch.from_numpy(img.transpose(0, 3, 1, 2))
img = img.to(device).float() / 255.0
# 导出onnx模型
if opt.onnx:
torch.onnx.export(model, # model being run
img, # model input (or a tuple for multiple inputs)
"./FastestDet.onnx", # where to save the model (can be a file or file-like object)
export_params=True, # store the trained parameter weights inside the model file
opset_version=11, # the ONNX version to export the model to
do_constant_folding=True) # whether to execute constant folding for optimization
# onnx-sim
onnx_model = onnx.load("./FastestDet.onnx") # load onnx model
model_simp, check = simplify(onnx_model)
assert check, "Simplified ONNX model could not be validated"
print("onnx sim sucess...")
onnx.save(model_simp, "./FastestDet.onnx")
# 导出torchscript模型
if opt.torchscript:
import copy
model_cpu = copy.deepcopy(model).cpu()
x = torch.rand(1, 3, cfg.input_height, cfg.input_width)
mod = torch.jit.trace(model_cpu, x)
mod.save("./FastestDet.pt")
print("to convert torchscript to pnnx/ncnn: ./pnnx FastestDet.pt inputshape=[1,3,%d,%d]" % (cfg.input_height, cfg.input_height))
# 模型推理
start = time.perf_counter()
preds = model(img)
end = time.perf_counter()
time = (end - start) * 1000.
print("forward time:%fms"%time)
# 特征图后处理
output = handle_preds(preds, device, opt.thresh)
# 加载label names
LABEL_NAMES = []
with open(cfg.names, 'r') as f:
for line in f.readlines():
LABEL_NAMES.append(line.strip())
H, W, _ = ori_img.shape
scale_h, scale_w = H / cfg.input_height, W / cfg.input_width
# 绘制预测框
for box in output[0]:
print(box)
box = box.tolist()
obj_score = box[4]
category = LABEL_NAMES[int(box[5])]
x1, y1 = int(box[0] * W), int(box[1] * H)
x2, y2 = int(box[2] * W), int(box[3] * H)
cv2.rectangle(ori_img, (x1, y1), (x2, y2), (255, 255, 0), 2)
cv2.putText(ori_img, '%.2f' % obj_score, (x1, y1 - 5), 0, 0.7, (0, 255, 0), 2)
cv2.putText(ori_img, category, (x1, y1 - 25), 0, 0.7, (0, 255, 0), 2)
cv2.imwrite("result.png", ori_img)