-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
23 lines (19 loc) · 1008 Bytes
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from sklearn import metrics
from sklearn.metrics import precision_recall_fscore_support
from sklearn.model_selection import RepeatedStratifiedKFold, cross_validate
def evaluate_model(model, X, y, X_test, y_test):
"""
Performs the cross validation of the ML algorithms and returns the training,
validation scores, and test predictions.
"""
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
model.fit(X, y)
# cross validation
scores = cross_validate(model, X, y, scoring=('accuracy', 'f1_weighted'),
cv=cv, n_jobs=-1, return_train_score=True)
# test prediction from the trained ml model
y_test_pred = model.predict(X_test)
# test metrics like accuracy, precision, recall, f1-score
test_acc = metrics.accuracy_score(y_test_pred, y_test)
test_p, test_r, test_f1, _ = precision_recall_fscore_support(y_test, y_test_pred, average='weighted')
return scores, y_test_pred, test_acc, test_p, test_r, test_f1