-
Notifications
You must be signed in to change notification settings - Fork 272
/
Copy pathInvMt.cs
108 lines (92 loc) · 2.53 KB
/
InvMt.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//
// Solution of linear algebraic equations and matrix inversion.
using BenchmarkDotNet.Attributes;
using MicroBenchmarks;
namespace Benchstone.BenchF
{
[BenchmarkCategory(Categories.Runtime, Categories.BenchF)]
public class InvMt
{
public const int Iterations = 80;
private const int MatSize = Iterations;
private static T[][] AllocArray<T>(int n1, int n2)
{
T[][] a = new T[n1][];
for (int i = 0; i < n1; ++i)
{
a[i] = new T[n2];
}
return a;
}
[Benchmark(Description = nameof(InvMt))]
public bool Test()
{
double[][] t = AllocArray<double>(MatSize + 1, (MatSize + 1) * 2);
double det, detinv, ber, p;
int n, i, j;
n = MatSize;
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
if (i == j)
{
t[i][j] = 2.0001;
t[i][n + 1 + j] = 1.0;
}
else
{
t[i][j] = 1.0001;
t[i][n + 1 + j] = 0.0;
}
}
t[i][n + 1] = System.Math.Sqrt((float)i);
}
Inner(t, out det, ref n);
for (i = 1; i <= n; i++)
{
for (j = 1; j <= n; j++)
{
p = t[i][j];
t[i][j] = t[i][n + 1 + j];
t[i][n + 1 + j] = p;
}
}
Inner(t, out detinv, ref n);
ber = 0.0;
for (i = 1; i <= n; i++)
{
ber = ber + System.Math.Abs(System.Math.Sqrt((double)i) - t[i][n + 1]);
}
return true;
}
private static void Inner(double[][] t, out double det, ref int n)
{
double tik, tkk;
det = 1.0;
for (int k = 1; k <= n; k++)
{
tkk = t[k][k];
det = det * tkk;
for (int j = 1; j <= (2 * n + 1); j++)
{
t[k][j] = t[k][j] / tkk;
}
for (int i = 1; i <= n; i++)
{
if (i != k)
{
tik = t[i][k];
for (int j = 1; j <= (2 * n + 1); j++)
{
t[i][j] = t[i][j] - t[k][j] * tik;
}
}
}
}
}
}
}