-
Notifications
You must be signed in to change notification settings - Fork 272
/
Copy pathBurgers.cs
198 lines (154 loc) · 6.76 KB
/
Burgers.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.
//
// .NET SIMD to solve Burgers' equation
//
// Benchmark based on
// https://github.com/taumuon/SIMD-Vectorisation-Burgers-Equation-CSharp
// http://www.taumuon.co.uk/2014/10/net-simd-to-solve-burgers-equation.html
using System;
using System.Linq;
using System.Numerics;
using BenchmarkDotNet.Attributes;
using MicroBenchmarks;
[BenchmarkCategory(Categories.Runtime, Categories.JIT, Categories.Burgers)]
public class Burgers
{
private static double BurgersAnalytical(double t, double x, double nu)
{
return -2 * nu * (-(-8 * t + 2 * x) * Math.Exp(-Math.Pow((-4 * t + x), 2) / (4 * nu * (t + 1))) / (4 * nu * (t + 1)) - (-8 * t + 2 * x - 12.5663706143592) * Math.Exp(-Math.Pow(-4 * t + x - 6.28318530717959, 2) / (4 * nu * (t + 1))) / (4 * nu * (t + 1))) / (Math.Exp(-Math.Pow(-4 * t + x - 6.28318530717959, 2) / (4 * nu * (t + 1))) + Math.Exp(-Math.Pow(-4 * t + x, 2) / (4 * nu * (t + 1)))) + 4;
}
private static double[] linspace(double first, double last, int num)
{
var step = (last - first) / (double)num;
return Enumerable.Range(0, num).Select(v => (v * step) + first).ToArray();
}
private static double[] GetAnalytical(double[] x, double t, double nu)
{
double[] u = new double[x.Length];
for (int i = 0; i < x.Length; ++i)
{
u[i] = BurgersAnalytical(t, x[i], nu);
}
return u;
}
private static double[] GetCalculated0(int nt, int nx, double dx, double dt, double nu, double[] initial)
{
double[] u = new double[nx];
Array.Copy(initial, u, u.Length);
for (int tStep = 0; tStep < nt; tStep++)
{
double[] un = new double[nx];
Array.Copy(u, un, u.Length);
for (int i = 1; i < nx - 1; i++)
{
u[i] = un[i] - un[i] * dt / dx * (un[i] - un[i - 1]) + Math.Pow(nu * dt / dx, 2.0) *
(un[i + 1] - 2 * un[i] + un[i - 1]);
}
u[0] = un[0] - un[0] * dt / dx * (un[0] - un[nx - 1]) + Math.Pow(nu * dt / dx, 2.0) *
(un[1] - 2 * un[0] + un[nx - 1]);
u[nx - 1] = un[nx - 1] - un[nx - 1] * dt / dx * (un[nx - 1] - un[nx - 2]) + Math.Pow(nu * dt / dx, 2.0) *
(un[0] - 2 * un[nx - 1] + un[nx - 2]);
}
return u;
}
// Reduce new array allocation and copying, ping-pong between them
private static double[] GetCalculated1(int nt, int nx, double dx, double dt, double nu, double[] initial)
{
double[] u = new double[nx];
double[] un = new double[nx];
Array.Copy(initial, un, un.Length);
for (int tStep = 0; tStep < nt; tStep++)
{
for (int i = 1; i < nx - 1; i++)
{
u[i] = un[i] - un[i] * dt / dx * (un[i] - un[i - 1]) + Math.Pow(nu * dt / dx, 2.0) *
(un[i + 1] - 2 * un[i] + un[i - 1]);
}
u[0] = un[0] - un[0] * dt / dx * (un[0] - un[nx - 1]) + Math.Pow(nu * dt / dx, 2.0) *
(un[1] - 2 * un[0] + un[nx - 1]);
u[nx - 1] = un[nx - 1] - un[nx - 1] * dt / dx * (un[nx - 1] - un[nx - 2]) + Math.Pow(nu * dt / dx, 2.0) *
(un[0] - 2 * un[nx - 1] + un[nx - 2]);
double[] swap = u;
u = un;
un = swap;
}
return un;
}
// Pull calculation of (nu * dt / dx)^2 out into a variable
private static double[] GetCalculated2(int nt, int nx, double dx, double dt, double nu, double[] initial)
{
double[] u = new double[nx];
double[] un = new double[nx];
Array.Copy(initial, un, un.Length);
double factor = Math.Pow(nu * dt / dx, 2.0);
for (int tStep = 0; tStep < nt; tStep++)
{
for (int i = 1; i < nx - 1; i++)
{
u[i] = un[i] - un[i] * dt / dx * (un[i] - un[i - 1]) + factor *
(un[i + 1] - 2 * un[i] + un[i - 1]);
}
u[0] = un[0] - un[0] * dt / dx * (un[0] - un[nx - 1]) + factor *
(un[1] - 2 * un[0] + un[nx - 1]);
u[nx - 1] = un[nx - 1] - un[nx - 1] * dt / dx * (un[nx - 1] - un[nx - 2]) + factor *
(un[0] - 2 * un[nx - 1] + un[nx - 2]);
double[] swap = u;
u = un;
un = swap;
}
return un;
}
// SIMD
private static double[] GetCalculated3(int nt, int nx, double dx, double dt, double nu, double[] initial)
{
var nx2 = nx + (Vector<double>.Count - (nx % Vector<double>.Count));
double[] u = new double[nx2];
double[] un = new double[nx2];
Array.Copy(initial, un, initial.Length);
double factor = Math.Pow(nu * dt / dx, 2.0);
for (int tStep = 0; tStep < nt; tStep++)
{
for (int i = 1; i < nx2 - Vector<double>.Count + 1; i += Vector<double>.Count)
{
var vectorIn0 = new Vector<double>(un, i);
var vectorInPrev = new Vector<double>(un, i - 1);
var vectorInNext = new Vector<double>(un, i + 1);
var vectorOut = vectorIn0 - vectorIn0 * (dt / dx) * (vectorIn0 - vectorInPrev) + factor *
(vectorInNext - 2.0 * vectorIn0 + vectorInPrev);
vectorOut.CopyTo(u, i);
}
u[0] = un[0] - un[0] * dt / dx * (un[0] - un[nx - 1]) + factor *
(un[1] - 2 * un[0] + un[nx - 1]);
u[nx - 1] = un[nx - 1] - un[nx - 1] * dt / dx * (un[nx - 1] - un[nx - 2]) + factor *
(un[0] - 2 * un[nx - 1] + un[nx - 2]);
double[] swap = u;
u = un;
un = swap;
}
return un;
}
const int nx = 10001;
const int nt = 10000;
const double nu = 0.07;
double dx, dt;
double[] x, initial;
[GlobalSetup]
public void Setup()
{
dx = 2.0 * Math.PI / (nx - 1.0);
dt = dx * nu;
x = linspace(0.0, 2.0 * Math.PI, nx);
initial = GetAnalytical(x, 0.0, nu);
}
[Benchmark(Description = "Burgers_0")]
public double[] Test0() => GetCalculated0(nt, nx, dx, dt, nu, initial);
[Benchmark(Description = "Burgers_1")]
public double[] Test1() => GetCalculated1(nt, nx, dx, dt, nu, initial);
[Benchmark(Description = "Burgers_2")]
public double[] Test2() => GetCalculated2(nt, nx, dx, dt, nu, initial);
[Benchmark(Description = "Burgers_3")]
[BenchmarkCategory(Categories.NoInterpreter, Categories.NoAOT)]
public double[] Test3() => GetCalculated3(nt * 2, nx, dx, dt, nu, initial);
}