-
Notifications
You must be signed in to change notification settings - Fork 4.9k
/
Copy pathgmsx86.cpp
1363 lines (1201 loc) · 51.6 KB
/
gmsx86.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
/**************************************************************/
/* gmsx86.cpp */
/**************************************************************/
#include "common.h"
#include "gmscpu.h"
#ifdef TARGET_UNIX
#define USE_EXTERNAL_UNWINDER
#endif
#ifndef USE_EXTERNAL_UNWINDER
/***************************************************************/
/* setMachState figures out what the state of the CPU will be
when the function that calls 'setMachState' returns. It stores
this information in 'frame'
setMachState works by simulating the execution of the
instructions starting at the instruction following the
call to 'setMachState' and continuing until a return instruction
is simulated. To avoid having to process arbitrary code, the
call to 'setMachState' should be called as follows
if (machState.setMachState != 0) return;
setMachState is guaranteed to return 0 (so the return
statement will never be executed), but the expression above
ensures that there is a 'quick' path to epilog
of the function. This ensures that setMachState will only
have to parse a limited number of X86 instructions. */
/***************************************************************/
#ifndef POISONC
#define POISONC ((sizeof(int *) == 4)?0xCCCCCCCCU:UI64(0xCCCCCCCCCCCCCCCC))
#endif
/***************************************************************/
/* the 'zeroFtn and 'recursiveFtn' are only here to determine
if if mscorwks itself has been instrumented by a profiler
that intercepts calls or epilogs of functions. (the
callsInstrumented and epilogInstrumented functions). */
#if !defined(DACCESS_COMPILE)
#ifdef _MSC_VER
#pragma optimize("gsy", on ) // optimize to ensure that code generation does not have junk in it
#endif // _MSC_VER
#pragma warning(disable:4717)
static int __stdcall zeroFtn() {
return 0;
}
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Winfinite-recursion"
#endif
static int __stdcall recursiveFtn() {
return recursiveFtn()+1;
}
#ifdef __clang__
#pragma clang diagnostic pop
#endif
#ifdef _MSC_VER
#pragma optimize("", on )
#endif // _MSC_VER
/* Has mscorwks been instrumented so that calls are morphed into push XXXX call <helper> */
static bool callsInstrumented() {
// Does the recursive function begin with push XXXX call <helper>
PTR_BYTE ptr = PTR_BYTE(recursiveFtn);
return (ptr[0] == 0x68 && ptr[5] == 0xe8); // PUSH XXXX, call <helper>
}
/* Has mscorwks been instrumented so function prolog and epilogs are replaced with
jmp [XXXX] */
static bool epilogInstrumented() {
PTR_BYTE ptr = PTR_BYTE(zeroFtn);
if (ptr[0] == 0xe8) // call <helper> (prolog instrumentation)
ptr += 5;
if (ptr[0] == 0x33 && ptr[1] == 0xc0) // xor eax eax
ptr += 2;
return (ptr[0] == 0xeb || ptr[0] == 0xe9); // jmp <XXXX>
}
#else
// Note that we have the callsInstrumeted and epilogInstrumented
// functions so that the looser heuristics used for instrumented code
// can't foul up an instrumented mscorwks. For simplicity sake we
// don't bother with this in the DAC, which means that the DAC could
// be misled more frequently than mscorwks itself, but I still think
// it will not be misled in any real scenario
static bool callsInstrumented() { LIMITED_METHOD_DAC_CONTRACT; return true; }
static bool epilogInstrumented() { LIMITED_METHOD_DAC_CONTRACT; return true; }
#endif // !defined(DACCESS_COMPILE)
/***************************************************************/
/* returns true if a call to 'ip' should be entered by the
epilog walker. Bascically we are looking for things that look
like __SEH_epilog. In particular we look for things that
pops a register before doing a push. If we see something
that we don't recognise, we dont consider it a epilog helper
and return false.
*/
static bool shouldEnterCall(PTR_BYTE ip) {
SUPPORTS_DAC;
int datasize; // helper variable for decoding of address modes
int mod; // helper variable for decoding of mod r/m
int rm; // helper variable for decoding of mod r/m
int pushes = 0;
// we should start unbalanced pops within 48 instrs. If not, it is not a special epilog function
// the only reason we need as many instructions as we have below is because coreclr
// gets instrumented for profiling, code coverage, BBT etc, and we want these things to
// just work.
for (int i = 0; i < 48; i++) {
switch(*ip) {
case 0xF2: // repne
case 0xF3: // repe
case 0x90: // nop
ip++;
break;
case 0x68: // push 0xXXXXXXXX
ip += 5;
// For office profiler. They morph tail calls into push TARGET; jmp helper
// so if you see
//
// push XXXX
// jmp xxxx
//
// and we notice that coreclr has been instrumented and
// xxxx starts with a JMP [] then do what you would do for jmp XXXX
if (*ip == 0xE9 && callsInstrumented()) { // jmp helper
PTR_BYTE tmpIp = ip + 5;
PTR_BYTE target = tmpIp + (int32_t)*((PTR_TADDR)(PTR_TO_TADDR(tmpIp) - 4));
if (target[0] == 0xFF && target[1] == 0x25) { // jmp [xxxx] (to external dll)
ip = PTR_BYTE(*((PTR_TADDR)(PTR_TO_TADDR(ip) - 4)));
}
}
else {
pushes++;
}
break;
case 0x50: // push EAX
case 0x51: // push ECX
case 0x52: // push EDX
case 0x53: // push EBX
case 0x55: // push EBP
case 0x56: // push ESI
case 0x57: // push EDI
pushes++;
ip++;
break;
case 0xE8: // call <disp32>
ip += 5;
pushes = 0; // This assumes that all of the previous pushes are arguments to this call
break;
case 0xFF:
if (ip[1] != 0x15) // call [XXXX] is OK (prolog of epilog helper is intrumented)
return false; // but everything else is not OK.
ip += 6;
pushes = 0; // This assumes that all of the previous pushes are arguments to this call
break;
case 0x9C: // pushfd
case 0x9D: // popfd
// a pushfd can never be an argument, so we model a pair of
// these instruction as not changing the stack so that a call
// that occurs between them does not consume the value of pushfd
ip++;
break;
case 0x5D: // pop EBP
case 0x5E: // pop ESI
case 0x5F: // pop EDI
case 0x5B: // pop EBX
case 0x58: // pop EAX
case 0x59: // pop ECX
case 0x5A: // pop EDX
if (pushes <= 0) {
// We now have more pops than pushes. This is our indication
// that we are in an EH_epilog function so we return true.
// This is the only way to exit this method with a retval of true.
return true;
}
--pushes;
ip++;
break;
case 0xA1: // MOV EAX, [XXXX]
ip += 5;
break;
case 0xC6: // MOV r/m8, imm8
datasize = 1;
goto decodeRM;
case 0x89: // MOV r/m, reg
if (ip[1] == 0xE5) // MOV EBP, ESP
return false;
if (ip[1] == 0xEC) // MOV ESP, EBP
return false;
goto move;
case 0x8B: // MOV reg, r/m
if (ip[1] == 0xE5) // MOV ESP, EBP
return false;
if (ip[1] == 0xEC) // MOV EBP, ESP
return false;
goto move;
case 0x88: // MOV reg, r/m (BYTE)
case 0x8A: // MOV r/m, reg (BYTE)
case 0x31: // XOR
case 0x32: // XOR
case 0x33: // XOR
move:
datasize = 0;
decodeRM:
// Note that we don't want to read from ip[] after
// we do ANY incrementing of ip
mod = (ip[1] & 0xC0) >> 6;
if (mod != 3) {
rm = (ip[1] & 0x07);
if (mod == 0) { // (mod == 0)
if (rm == 5)
ip += 4; // disp32
else if (rm == 4)
ip += 1; // [reg*K+reg]
// otherwise [reg]
}
else if (mod == 1) { // (mod == 1)
ip += 1; // for disp8
if (rm == 4)
ip += 1; // [reg*K+reg+disp8]
// otherwise [reg+disp8]
}
else { // (mod == 2)
ip += 4; // for disp32
if (rm == 4)
ip += 1; // [reg*K+reg+disp32]
// otherwise [reg+disp32]
}
}
ip += 2;
ip += datasize;
break;
case 0x64: // FS: prefix
ip++;
break;
case 0xEB: // jmp <disp8>
ip += (int8_t) ip[1] + 2;
break;
case 0xE9: // jmp <disp32>
ip += (int32_t)*PTR_DWORD(PTR_TO_TADDR(ip) + 1) + 5;
break;
case 0xF7: // test r/m32, imm32
// Magellan code coverage build
if ( (ip[1] & 0x38) == 0x00)
{
datasize = 4;
goto decodeRM;
}
else
{
return false;
}
break;
case 0x75: // jnz <target>
// Magellan code coverage build
// We always follow forward jump to avoid possible looping.
{
PTR_BYTE tmpIp = ip + (TADDR)(int8_t) ip[1] + 2;
if (tmpIp > ip) {
ip = tmpIp; // follow forwards jump
}
else {
return false; // backwards jump implies not EH_epilog function
}
}
break;
case 0xC2: // ret
case 0xC3: // ret n
default:
return false;
}
}
return false;
}
/***************************************************************/
#ifdef _PREFAST_
#pragma warning(push)
#pragma warning(disable:21000) // Suppress PREFast warning about overly large function
#endif
/***************************************************************/
// A fundamental requirement of managed code is that we need to be able to enumerate all GC references on the
// stack at GC time. To do this we need to be able to 'crawl' the stack. We know how to do this in JIT
// compiled code (it generates additional information like the frame size etc), but we don't know how to do
// this for unmanaged code. For PINVOKE calls, we leave a pointer to the transition boundary between managed
// and unmanaged code and we simply ignore the lower part of the stack. However setting up this transition is
// a bit expensive (1-2 dozen instructions), and while that is acceptable for PINVOKE, it is not acceptable
// for high volume calls, like NEW, CAST, WriterBarrier, Stack field fetch and others.
//
// To get around this, for transitions into the runtime (which we call FCALLS), we DEFER setting up the
// boundary variables (what we call the transition frame), until we actually need it (we will do an operation
// that might cause a GC). This allow us to handle the common case (where we might find the thing in a cache,
// or be service the 'new' from a allocation quantum), and only pay the cost of setting up the transition
// frame when it will actually be used.
//
// The problem is that in order to set up a transition frame we need to be able to find ALL REGISTERS AT THE
// TIME THE TRANSITION TO UNMANAGED CODE WAS MADE (because we might need to update them if they have GC
// references). Because we have executed ordinary C++ code (which might spill the registers to the stack at
// any time), we have a problem. LazyMachState is our 'solution' to this problem. We take advantage of the
// fact that the C++ code MUST RESTORE the register before returning. Thus we simulate the execution from the
// current location to the return and 'watch' where the registers got restored from. This is what
// unwindLazyState does (determine what the registers would be IF you had never executed and unmanaged C++
// code).
//
// By design, this code does not handle all X86 instructions, but only those instructions needed in an
// epilog. If you get a failure because of a missing instruction, it MAY simply be because the compiler
// changed and now emits a new instruction in the epilog, but it MAY also be because the unwinder is
// 'confused' and is trying to follow a code path that is NOT AN EPILOG, and in this case adding
// instructions to 'fix' it is inappropriate.
//
void LazyMachState::unwindLazyState(LazyMachState* baseState,
MachState* lazyState,
DWORD threadId,
int funCallDepth /* = 1 */)
{
CONTRACTL {
NOTHROW;
GC_NOTRIGGER;
SUPPORTS_DAC;
} CONTRACTL_END;
lazyState->_edi = baseState->_edi;
lazyState->_esi = baseState->_esi;
lazyState->_ebx = baseState->_ebx;
lazyState->_ebp = baseState->captureEbp;
#ifndef DACCESS_COMPILE
lazyState->_pEdi = &baseState->_edi;
lazyState->_pEsi = &baseState->_esi;
lazyState->_pEbx = &baseState->_ebx;
lazyState->_pEbp = &baseState->_ebp;
#endif
// We have captured the state of the registers as they exist in 'captureState'
// we need to simulate execution from the return address captured in 'captureState
// until we return from the caller of captureState.
PTR_BYTE ip = PTR_BYTE(baseState->captureEip);
PTR_TADDR ESP = PTR_TADDR(baseState->captureEsp);
ESP++; // pop captureState's return address
// VC now has small helper calls that it uses in epilogs. We need to walk into these
// helpers if we are to decode the stack properly. After we walk the helper we need
// to return and continue walking the epiliog. This variable remembers were to return to
PTR_BYTE epilogCallRet = PTR_BYTE((TADDR)0);
// The very first conditional jump that we are going to encounter is
// the one testing for the return value of LazyMachStateCaptureState.
// The non-zero path is the one directly leading to a return statement.
// This variable keeps track of whether we are still looking for that
// first conditional jump.
BOOL bFirstCondJmp = TRUE;
// The general strategy is that we always try to plough forward:
// we follow a conditional jump if and only if it is a forward jump.
// However, in fcall functions that set up a HELPER_METHOD_FRAME in
// more than one place, gcc will have both of them share the same
// epilog - and the second one may actually be a backward jump.
// This can lead us to loop in a destructor code loop. To protect
// against this, we remember the ip of the last conditional jump
// we followed, and if we encounter it again, we take the other branch.
PTR_BYTE lastCondJmpIp = PTR_BYTE((TADDR)0);
int datasize; // helper variable for decoding of address modes
int mod; // helper variable for decoding of mod r/m
int rm; // helper variable for decoding of mod r/m
#ifdef _DEBUG
int count = 0;
const DWORD cInstructions = 1000;
PTR_BYTE *instructionBytes = (PTR_BYTE*)alloca(cInstructions * sizeof(PTR_BYTE));
memset(instructionBytes, 0, cInstructions * sizeof(PTR_BYTE));
#endif
bool bset16bit=false;
bool b16bit=false;
for(;;)
{
_ASSERTE(count++ < 1000); // we should never walk more than 1000 instructions!
b16bit=bset16bit;
bset16bit=false;
#ifndef DACCESS_COMPILE
again:
#endif
#ifdef _DEBUG
instructionBytes[count-1] = ip;
#endif
switch(*ip)
{
case 0x64: // FS: prefix
bset16bit=b16bit; // In case we have just seen a 0x66 prefix
goto incIp1;
case 0x66:
bset16bit=true; // Remember that we saw the 0x66 prefix [16-bit datasize override]
goto incIp1;
case 0x50: // push EAX
case 0x51: // push ECX
case 0x52: // push EDX
case 0x53: // push EBX
case 0x55: // push EBP
case 0x56: // push ESI
case 0x57: // push EDI
case 0x9C: // pushfd
--ESP;
case 0x40: // inc EAX
case 0x41: // inc ECX
case 0x42: // inc EDX
case 0x43: // inc EBX
case 0x46: // inc ESI
case 0x47: // inc EDI
goto incIp1;
case 0x58: // pop EAX
case 0x59: // pop ECX
case 0x5A: // pop EDX
case 0x9D: // popfd
ESP++;
// FALL THROUGH
case 0x90: // nop
incIp1:
ip++;
break;
case 0x5B: // pop EBX
lazyState->_pEbx = ESP;
lazyState->_ebx = *ESP++;
goto incIp1;
case 0x5D: // pop EBP
lazyState->_pEbp = ESP;
lazyState->_ebp = *ESP++;
goto incIp1;
case 0x5E: // pop ESI
lazyState->_pEsi = ESP;
lazyState->_esi = *ESP++;
goto incIp1;
case 0x5F: // pop EDI
lazyState->_pEdi = ESP;
lazyState->_edi = *ESP++;
goto incIp1;
case 0xEB: // jmp <disp8>
ip += (int8_t) ip[1] + 2;
break;
case 0x72: // jb <disp8> for gcc.
{
PTR_BYTE tmpIp = ip + (int)(int8_t)ip[1] + 2;
if (tmpIp > ip)
ip = tmpIp;
else
ip += 2;
}
break;
case 0xE8: // call <disp32>
ip += 5;
if (epilogCallRet == 0)
{
PTR_BYTE target = ip + (int32_t)*PTR_DWORD(PTR_TO_TADDR(ip) - 4); // calculate target
if (shouldEnterCall(target))
{
epilogCallRet = ip; // remember our return address
--ESP; // simulate pushing the return address
ip = target;
}
}
break;
case 0xE9: // jmp <disp32>
{
PTR_BYTE tmpIp = ip
+ ((int32_t)*dac_cast<PTR_DWORD>(ip + 1) + 5);
ip = tmpIp;
}
break;
case 0x0f: // follow non-zero jumps:
if (ip[1] >= 0x90 && ip[1] <= 0x9f) {
if ((ip[2] & 0xC0) != 0xC0) // set<cc> reg
goto badOpcode;
ip += 3;
break;
}
else if ((ip[1] & 0xf0) == 0x40) { //cmov mod/rm
++ip;
datasize = 0;
goto decodeRM;
}
else if (ip[1] >= 0x10 && ip[1] <= 0x17) { // movups, movlps, movhps, unpcklpd, unpckhpd
++ip;
datasize = 0;
goto decodeRM;
}
else if (ip[1] == 0x1f) { // nop (multi-byte)
++ip;
datasize = 0;
goto decodeRM;
}
else if (ip[1] == 0x57) { // xorps
++ip;
datasize = 0;
goto decodeRM;
}
else if (ip[1] == 0xb6 || ip[1] == 0xb7) { //movzx reg, r/m8
++ip;
datasize = 0;
goto decodeRM;
}
else if (ip[1] == 0xbf) { //movsx reg, r/m16
++ip;
datasize = 0;
goto decodeRM;
}
else if (ip[1] == 0xd6 || ip[1] == 0x7e) { // movq
++ip;
datasize = 0;
goto decodeRM;
}
else if (bFirstCondJmp) {
bFirstCondJmp = FALSE;
if (ip[1] == 0x85) // jne <disp32>
ip += (int32_t)*dac_cast<PTR_DWORD>(ip + 2) + 6;
else if (ip[1] >= 0x80 && ip[1] <= 0x8F) // jcc <disp32>
ip += 6;
else
goto badOpcode;
}
else {
if ((ip[1] >= 0x80) && (ip[1] <= 0x8F)) {
PTR_BYTE tmpIp = ip + (int32_t)*dac_cast<PTR_DWORD>(ip + 2) + 6;
if ((tmpIp > ip) == (lastCondJmpIp != ip)) {
lastCondJmpIp = ip;
ip = tmpIp;
}
else {
lastCondJmpIp = ip;
ip += 6;
}
}
else
goto badOpcode;
}
break;
// This is here because VC seems to not always optimize
// away a test for a literal constant
case 0x6A: // push 0xXX
ip += 2;
--ESP;
break;
case 0x68: // push 0xXXXXXXXX
if ((ip[5] == 0xFF) && (ip[6] == 0x15)) {
ip += 11; //
}
else {
ip += 5;
// For office profiler. They morph calls into push TARGET; call helper
// so if you see
//
// push XXXX
// call xxxx
//
// and we notice that mscorwks has been instrumented and
// xxxx starts with a JMP [] then do what you would do for call XXXX
if ((*ip & 0xFE) == 0xE8 && callsInstrumented()) { // It is a call or a jump (E8 or E9)
PTR_BYTE tmpIp = ip + 5;
PTR_BYTE target = tmpIp + (int32_t)*PTR_DWORD(PTR_TO_TADDR(tmpIp) - 4);
if (target[0] == 0xFF && target[1] == 0x25) { // jmp [xxxx] (to external dll)
target = PTR_BYTE(*PTR_TADDR(PTR_TO_TADDR(ip) - 4));
if (*ip == 0xE9) { // Do logic for jmp
ip = target;
}
else if (shouldEnterCall(target)) { // Do logic for calls
epilogCallRet = ip; // remember our return address
--ESP; // simulate pushing the return address
ip = target;
}
}
}
}
break;
case 0x74: // jz <target>
if (bFirstCondJmp) {
bFirstCondJmp = FALSE;
ip += 2; // follow the non-zero path
break;
}
goto condJumpDisp8;
case 0x75: // jnz <target>
// Except the first jump, we always follow forward jump to avoid possible looping.
//
if (bFirstCondJmp) {
bFirstCondJmp = FALSE;
ip += (int8_t) ip[1] + 2; // follow the non-zero path
break;
}
goto condJumpDisp8;
case 0x77: // ja <target>
case 0x78: // js <target>
case 0x79: // jns <target>
case 0x7d: // jge <target>
case 0x7c: // jl <target>
goto condJumpDisp8;
condJumpDisp8:
{
PTR_BYTE tmpIp = ip + (TADDR)(int8_t) ip[1] + 2;
if ((tmpIp > ip) == (lastCondJmpIp != ip)) {
lastCondJmpIp = ip;
ip = tmpIp;
}
else {
lastCondJmpIp = ip;
ip += 2;
}
}
break;
case 0x84:
case 0x85:
mod = (ip[1] & 0xC0) >> 6;
if (mod != 3) // test reg1, reg2
goto badOpcode;
ip += 2;
break;
case 0x34: // XOR AL, imm8
ip += 2;
break;
case 0x31:
case 0x32:
case 0x33:
#ifdef __GNUC__
//there are lots of special workarounds for XOR for msvc. For GnuC
//just do the normal Mod/rm stuff.
datasize = 0;
goto decodeRM;
#else
mod = (ip[1] & 0xC0) >> 6;
if (mod == 3)
{
// XOR reg1, reg2
// VC generates this sequence in some code:
// xor reg, reg
// test reg reg
// je <target>
// This is just an unconditional branch, so jump to it
if ((ip[1] & 7) == ((ip[1] >> 3) & 7)) { // reg1 == reg2?
if (ip[2] == 0x85 && ip[3] == ip[1]) { // TEST reg, reg
if (ip[4] == 0x74) {
ip += (int8_t) ip[5] + 6; // follow the non-zero path
break;
}
_ASSERTE(ip[4] != 0x0f || ((ip[5] & 0xF0)!=0x80)); // If this goes off, we need the big jumps
}
else
{
if (ip[2]==0x74)
{
ip += (int8_t) ip[3] + 4;
break;
}
_ASSERTE(ip[2] != 0x0f || ((ip[3] & 0xF0)!=0x80)); // If this goes off, we need the big jumps
}
}
ip += 2;
}
else if (mod == 1)
{
// XOR reg1, [reg+offs8]
// Used by the /GS flag for call to __security_check_cookie()
// Should only be XOR ECX,[EBP+4]
_ASSERTE((((ip[1] >> 3) & 0x7) == 0x1) && ((ip[1] & 0x7) == 0x5) && (ip[2] == 4));
ip += 3;
}
else if (mod == 2)
{
// XOR reg1, [reg+offs32]
// Should not happen but may occur with __security_check_cookie()
_ASSERTE(!"Unexpected XOR reg1, [reg+offs32]");
ip += 6;
}
else // (mod == 0)
{
// XOR reg1, [reg]
goto badOpcode;
}
break;
#endif
case 0x05:
// added to handle gcc 3.3 generated code
// add %reg, constant
ip += 5;
break;
case 0xFF:
if ( (ip[1] & 0x38) == 0x30)
{
// opcode generated by Vulcan/BBT instrumentation
// search for push dword ptr[esp]; push imm32; call disp32 and if found ignore it
if ((ip[1] == 0x34) && (ip[2] == 0x24) && // push dword ptr[esp] (length 3 bytes)
(ip[3] == 0x68) && // push imm32 (length 5 bytes)
(ip[8] == 0xe8)) // call disp32 (length 5 bytes)
{
// found the magic seq emitted by Vulcan instrumentation
ip += 13; // (3+5+5)
break;
}
--ESP; // push r/m
datasize = 0;
goto decodeRM;
}
else if ( (ip[1] & 0x38) == 0x10)
{
// added to handle gcc 3.3 generated code
// This is a call *(%eax) generated by gcc for destructor calls.
// We can safely skip over the call
datasize = 0;
goto decodeRM;
}
else if (ip[1] == 0xe0)
{
goto badOpcode;
#if 0
// Handles jmp *%eax from gcc
datasize = 0;
goto decodeRM;
#endif
}
else if (ip[1] == 0x25 && epilogInstrumented()) // is it jmp [XXXX]
{
// this is a office profiler epilog (this jmp is acting as a return instruction)
PTR_BYTE epilogHelper = PTR_BYTE(*PTR_TADDR(*PTR_TADDR(PTR_TO_TADDR(ip) + 2)));
ip = PTR_BYTE(*ESP);
lazyState->_pRetAddr = ESP++;
if (epilogHelper[0] != 0x6A) // push <number of dwords to pop>
goto badOpcode;
unsigned disp = *PTR_BYTE(PTR_TO_TADDR(epilogHelper) + 1) * 4;
ESP = PTR_TADDR(PTR_TO_TADDR(ESP) + disp); // pop args
goto ret_with_epilogHelperCheck;
}
else
{
goto badOpcode;
}
break;
case 0x39: // comp r/m, reg
case 0x3B: // comp reg, r/m
datasize = 0;
goto decodeRM;
case 0xA1: // MOV EAX, [XXXX]
ip += 5;
break;
case 0x89: // MOV r/m, reg
if (ip[1] == 0xEC) // MOV ESP, EBP
goto mov_esp_ebp;
if (ip[1] == 0xDC) // MOV ESP, EBX
goto mov_esp_ebx;
// FALL THROUGH
case 0x18: // SBB r/m8, r8
case 0x19: // SBB r/m[16|32], r[16|32]
case 0x1A: // SBB r8, r/m8
case 0x1B: // SBB r[16|32], r/m[16|32]
case 0x88: // MOV reg, r/m (BYTE)
case 0x8A: // MOV r/m, reg (BYTE)
move:
datasize = 0;
decodeRM:
// Note that we don't want to read from ip[]
// after we do ANY incrementing of ip
mod = (ip[1] & 0xC0) >> 6;
if (mod != 3) {
rm = (ip[1] & 0x07);
if (mod == 0) { // (mod == 0)
if (rm == 5) // has disp32?
ip += 4; // [disp32]
else if (rm == 4) // has SIB byte?
ip += 1; // [reg*K+reg]
}
else if (mod == 1) { // (mod == 1)
if (rm == 4) // has SIB byte?
ip += 1; // [reg*K+reg+disp8]
ip += 1; // for disp8
}
else { // (mod == 2)
if (rm == 4) // has SIB byte?
ip += 1; // [reg*K+reg+disp32]
ip += 4; // for disp32
}
}
ip += 2; // opcode and Mod R/M byte
ip += datasize;
break;
case 0x80: // OP r/m8, <imm8>
datasize = 1;
goto decodeRM;
case 0x81: // OP r/m32, <imm32>
if (!b16bit && ip[1] == 0xC4) { // ADD ESP, <imm32>
ESP = dac_cast<PTR_TADDR>(dac_cast<TADDR>(ESP) +
(int32_t)*dac_cast<PTR_DWORD>(ip + 2));
ip += 6;
break;
} else if (!b16bit && ip[1] == 0xC5) { // ADD EBP, <imm32>
lazyState->_ebp += (int32_t)*dac_cast<PTR_DWORD>(ip + 2);
ip += 6;
break;
}
datasize = b16bit?2:4;
goto decodeRM;
case 0x24: // AND AL, imm8
ip += 2;
break;
case 0x01: // ADD mod/rm
case 0x03:
case 0x11: // ADC mod/rm
case 0x13:
case 0x21: // AND mod/rm
case 0x29: // SUB mod/rm
case 0x2B:
datasize = 0;
goto decodeRM;
case 0x83: // OP r/m32, <imm8>
if (ip[1] == 0xC4) { // ADD ESP, <imm8>
ESP = dac_cast<PTR_TADDR>(dac_cast<TADDR>(ESP) + (int8_t)ip[2]);
ip += 3;
break;
}
if (ip[1] == 0xec) { // SUB ESP, <imm8>
ESP = PTR_TADDR(PTR_TO_TADDR(ESP) - (int8_t)ip[2]);
ip += 3;
break;
}
if (ip[1] == 0xe4) { // AND ESP, <imm8>
ESP = PTR_TADDR(PTR_TO_TADDR(ESP) & (int8_t)ip[2]);
ip += 3;
break;
}
if (ip[1] == 0xc5) { // ADD EBP, <imm8>
lazyState->_ebp += (int8_t)ip[2];
ip += 3;
break;
}
datasize = 1;
goto decodeRM;
case 0x8B: // MOV reg, r/m
if (ip[1] == 0xE5) { // MOV ESP, EBP
mov_esp_ebp:
ESP = PTR_TADDR(lazyState->_ebp);
ip += 2;
break;
}
if (ip[1] == 0xE3) { // MOV ESP, EBX
mov_esp_ebx:
ESP = PTR_TADDR(lazyState->_ebx);
ip += 2;
break;
}
if ((ip[1] & 0xc7) == 0x4 && ip[2] == 0x24) // move reg, [esp]
{
if ( ip[1] == 0x1C ) { // MOV EBX, [ESP]
lazyState->_pEbx = ESP;
lazyState->_ebx = *lazyState->_pEbx;
}
else if ( ip[1] == 0x34 ) { // MOV ESI, [ESP]
lazyState->_pEsi = ESP;
lazyState->_esi = *lazyState->_pEsi;
}
else if ( ip[1] == 0x3C ) { // MOV EDI, [ESP]
lazyState->_pEdi = ESP;
lazyState->_edi = *lazyState->_pEdi;
}
else if ( ip[1] == 0x24 /*ESP*/ || ip[1] == 0x2C /*EBP*/)
goto badOpcode;
ip += 3;
break;
}
if ((ip[1] & 0xc7) == 0x44 && ip[2] == 0x24) // move reg, [esp+imm8]
{
if ( ip[1] == 0x5C ) { // MOV EBX, [ESP+XX]
lazyState->_pEbx = PTR_TADDR(PTR_TO_TADDR(ESP) + (int8_t)ip[3]);
lazyState->_ebx = *lazyState->_pEbx ;
}
else if ( ip[1] == 0x74 ) { // MOV ESI, [ESP+XX]
lazyState->_pEsi = PTR_TADDR(PTR_TO_TADDR(ESP) + (int8_t)ip[3]);
lazyState->_esi = *lazyState->_pEsi;
}
else if ( ip[1] == 0x7C ) { // MOV EDI, [ESP+XX]
lazyState->_pEdi = PTR_TADDR(PTR_TO_TADDR(ESP) + (int8_t)ip[3]);
lazyState->_edi = *lazyState->_pEdi;
}
else if ( ip[1] == 0x64 /*ESP*/ || ip[1] == 0x6C /*EBP*/)
goto badOpcode;
ip += 4;
break;
}
if ((ip[1] & 0xC7) == 0x45) { // MOV reg, [EBP + imm8]
// gcc sometimes restores callee-preserved registers
// via 'mov reg, [ebp-xx]' instead of 'pop reg'
if ( ip[1] == 0x5D ) { // MOV EBX, [EBP+XX]
lazyState->_pEbx = PTR_TADDR(lazyState->_ebp + (int8_t)ip[2]);
lazyState->_ebx = *lazyState->_pEbx ;
}
else if ( ip[1] == 0x75 ) { // MOV ESI, [EBP+XX]
lazyState->_pEsi = PTR_TADDR(lazyState->_ebp + (int8_t)ip[2]);
lazyState->_esi = *lazyState->_pEsi;
}
else if ( ip[1] == 0x7D ) { // MOV EDI, [EBP+XX]
lazyState->_pEdi = PTR_TADDR(lazyState->_ebp + (int8_t)ip[2]);
lazyState->_edi = *lazyState->_pEdi;
}