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Multi-Sensor Fusion: Covariance Intersection
Using Tracks as Measurements

Background

The covariance intersection algorithm from Julier and Uhlmann 1

is a popular algorithm for
track-to-track fusion in target tracking systems. This approach is highly appealing due to its
robustness, simple structure, and applicability to any tracking system that uses Gaussians as the
basis for tracking. Generalisations to non-Gaussian systems have been proposed based on the
exponential mixture density structure of the algorithm. The approach is based on a simple rule
called the Chernoff Fusion Rule. However, due to the non-Bayesian formulation of the rule, it
cannot be integrated straightforwardly into multi-target tracking algorithms which are based on

Bayesian formulations.

A new Bayesian formulation for covariance intersection was recently proposed which allows for
the integration of the approach into multi-target tracking algorithms. 2 The new formulation
recasts the fusion rule as a Bayesian update rule that calculates a normalisation constant which
enables integration into different multi-target tracking algorithms.

In this example we demonstrate the approach with different multi-target trackers in a multi-
platform scenario where the sensors output estimated target tracks instead of raw
measurements. In real life situations, such sensors make multi-target tracking more accessible to
new researchers because the researchers don't have to know about or implement target filtering
and/or tracking algorithms on their own. However, when there are multiple sensors measuring
the same target space and they all produce estimated tracks, as demonstrated in this example, it
is not immediately clear how to combine this information into a single set of tracks. This is where
covariance intersection comes in.

The concept of covariance intersection relies on the aforementioned Chernoff fusion rule 3.
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In situations where p; (z) and po () are multivariate Gaussian distributions, this formula is equal
to the Covariance Intersection Algorithm from Julier and Uhlmann. In the Covariance
Intersection Algorithm, the weighting parameter, w € [0, 1] is chosen using an optimization
algorithm. In this example, we have set it to 0.5 for simplicity.
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We also introduce the following identity. Given two Gaussians, N (z; a, A) and N (x; b, B) with
the same dimension, we have:
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This example considers the Gaussian mixture probability hypothesis density (GM-PHD)

algorithm as the tracker for the track-to-track fusion. The following table shows the formulas
used in the regular GM-PHD, and the GM-PHD covariance intersector algorithm.



Traditional GM-PHD
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Z,. —random finite set of measurements
pp — probability of detection

K — clutter intensity

H — measurement matrix

R — measurement noise covariance

I — Identity matrix

A j— set of tracks, consisting of (mean, covariance) pairs (a;, 4;)
pg — probability that any given target has been estimated in
tracks A by the sensor

A —intensity of false tracks

w — the weighting parameter in range (0, 1]

The specifics for implementing the Covariance Intersection Algorithm in several popular multi-

target tracking algorithms was expanded upon recently by Clark et al 4 The work includes a

discussion of Stone Soup and and is used as the basis for this example.

The rest of this example will continue as follows:

« Create a simulator for the ground truth

« Create 2 radar simulators, one on the ground and one that is airborne

« Make a JPDA tracker for the first radar, and a Gaussian mixture linear complexity with

cumulants (GM-LCC) tracker for the second. These will mimic the situation where the

radar sensors outputs tracks instead of raw measurements.

« Create a GM-PHD tracker that will perform measurement fusion, using all measurements

from both radars. This is created to compare with the covariance intersection method.

« Create a GM-PHD tracker that will perform track fusion via covariance intersection using

the chernoffupdater class.

» Create metric managers for each of the four trackers

» Set up the detection feeders. Each tracker will receive measurements using a custom

pummyDetector class. The track fusion tracker will also use the

Tracks2GaussianDetectionFeeder Class.

e Run the simulation

+ Plot the resulting tracks and the metrics over time




from copy import deepcopy
import numpy as np
from datetime import datetime

start_time = datetime.now()
num_steps = 50

1: Create a Ground Truth Simulator

We will simulate the paths of two targets using the MmultitargetGroundTruthsimulator . We can
dictate the starting states of the two targets using the preexisting_states parameter. The targets
start at [-100, -200, 500] and [0, 300, 500] respectively. Their initial velocities are [4, 0.5, O] and
[5, -0.5, 0] and they move according to a constant velocity transition model with noise.

from stonesoup.models.transition.linear import CombinedLinearGaussianTransitionModel,\
ConstantVelocity
truth_transition_model = CombinedLinearGaussianTransitionModel(
(ConstantVelocity(@.5), ConstantVelocity(@.5), ConstantVelocity(0.5)))

from stonesoup.simulator.simple import MultiTargetGroundTruthSimulator
from stonesoup.types.state import GaussianState
gt_simulator = MultiTargetGroundTruthSimulator(
transition_model=truth_transition_model,
initial_state=GaussianState([0, ©, 0, @, 500, 0], np.diag([1le0, 1, 100, 1, 100, 1]),
timestamp=start_time),
birth_rate=0,
death_probability=0,
number_steps=num_steps,
preexisting_states=[[-100, 4, -200, 0.5, 500, 0], [0, 5, 300, -0.5, 500, 0]]

2: Create Two Radars and a Detection Simulation

The two radars can share the same clutter model.

from stonesoup.models.clutter.clutter import ClutterModel
clutter_model = ClutterModel(
clutter_rate=2.0,
distribution=np.random.default_rng().uniform,
dist_params=((-600.0, 600.0), (-600.0, 600.0), (250.0, 750.0))



The first radar will be airborne, at an altitude of approximately 3000 m. It makes detections with
an elevation, bearing, and range measurement model. By setting the max_range to 3500, we can
ensure that it does not make detections of the other radar (which will be far away on the
ground). We will later do a similar thing with the second radar. This mimics a real-life scenario
where each radar is outside the field-of-view of the other.

from stonesoup.sensor.radar.radar import RadarElevationBearingRange
from stonesoup.types.array import CovarianceMatrix

from stonesoup.types.array import StateVector

from stonesoup.platform.base import MovingPlatform

from stonesoup.types.state import State

radarl = RadarElevationBearingRange(
ndim_state=6,
position_mapping=(0, 2, 4),
noise_covar=CovarianceMatrix(np.diag([np.deg2rad(0.005), np.deg2rad(0.005), ©.05])),
mounting offset=StateVector([10, 0, 0]),
clutter_model=clutter_model,
max_range=3500

# Mount the radar onto a moving platform. The platform starts at [-250, 50, 3000]
# with velocity [1, 5, @] and moves according to a constant velocity model with Low noise
sensorl_initial_loc = StateVector([[-250], [1], [50], [5], [3000], [0]1])
initial_state = State(sensorl_initial_loc, start_time)
sensorl_transition_model = CombinedLinearGaussianTransitionModel(

[ConstantVelocity(®.3), ConstantVelocity(@.3), ConstantVelocity(©.3)])
sensorl_platform = MovingPlatform(

states=initial_state,

position_mapping=(0, 2, 4),

velocity_mapping=(1, 3, 5),

transition_model=sensorl_transition_model,

sensors=[radarl]

The second radar will be stationary on the ground at the point [2000, 50, O]. This radar also
measures in 3D using bearing, range, and elevation.



radar2_noise_covar = CovarianceMatrix(np.diag([np.deg2rad(0.005), np.deg2rad(0.005), 0.05]))
radar2 = RadarElevationBearingRange(

ndim_state=6,

position_mapping=(0, 2, 4),

noise_covar=radar2_noise_covar,

clutter_model=clutter_model,

max_range=3000

# Make a platform and mount the radar
from stonesoup.platform.base import FixedPlatform
sensor2_platform = FixedPlatform(
State([2000, 0, 50, 0, 0, 0]),
position_mapping=[0, 2, 4],
sensors=[radar2]

Now we can pass the platforms into a detection simulator. At each timestep, the simulator will
return the detections from the sensor1_platform, then the detections from the sensor2_platform.

from stonesoup.simulator.platform import PlatformDetectionSimulator
radar_simulator = PlatformDetectionSimulator(
groundtruth=gt_simulator,
platforms=[sensorl_platform, sensor2_platform]

Let’s briefly visualize the truths and measurements before we move on. Note that the final
simulation will not have the same truths because the ground truth generator is randomized. But
this gives an idea of what it will look like. The detections from the first sensor (airborne) will be
plotted in blue, and the detections from the second sensor are in red. The clutter from both
sensors are plotted in yellow. The sensor locations will be plotted in green Xs.



from stonesoup.plotter import Plotter, Dimension

# Lists to hold the detections from each sensor and the path of the airborne radar
sl _detections = []

s2_detections = []

radarl_path = []

# Extract the generator function from a copy of the simulator
sim = deepcopy(radar_simulator)
g = sim.detections_gen()

# Iterate over the time steps, extracting the detections, truths, and airborne sensor path
for _ in range(num_steps):

s1_detections.append(next(g)[1])

s2_detections.append(next(g)[1])

radarl_path.append(sim.platforms[@].position)
truths = set(sim.groundtruth.groundtruth_paths)

# Plot the truths and detections

plotter = Plotter(dimension=Dimension.THREE)
plotter.plot_ground_truths(truths, [0, 2, 4])
plotter.plot_measurements(sl_detections, [0, 2, 4], color='blue')
plotter.plot_measurements(s2_detections, [0, 2, 4], color='red")

# Plot the radar positions
plotter.ax.plot(*zip(*radarl_path), marker='x"', color="green')
plotter.ax.plot(2000, 50, ©, marker='x"', color='green')
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Out:

[<mpl_toolkits.mplot3d.art3d.Line3D object at ©x000001F1332E2CA0>]

3: Make Trackers for the Radars

The airborne radar will be tracking using a JPDA tracker, and the stationary one will use a GM-
LCC. These trackers will not be given the platform detection simulation objects as parameters,
we will feed the measurements later to ensure that that the same measurements are used in the
fusion trackers. To start, we can calculate the clutter spatial density.

clutter_area = np.prod(np.diff(clutter_model.dist_params))
clutter_spatial_density = clutter_model.clutter_rate/clutter_area

JPDA Tracker



from stonesoup.hypothesiser.probability import PDAHypothesiser
from stonesoup.updater.kalman import ExtendedKalmanUpdater

from stonesoup.predictor.kalman import ExtendedKalmanPredictor
from stonesoup.dataassociator.probability import IJPDA

from stonesoup.deleter.error import CovarianceBasedDeleter

from stonesoup.initiator.simple import MultiMeasurementInitiator
from stonesoup.tracker.simple import MultiTargetMixtureTracker

# Updater
jpda_updater = ExtendedKalmanUpdater(measurement_model=None)

# Data Associator
predictor = ExtendedKalmanPredictor(truth_transition_model)
hypothesiser = PDAHypothesiser(
predictor=predictor,
updater=jpda_updater,
clutter_spatial_density=clutter_spatial_density,
prob_detect=0.9
)

data_associator = JPDA(hypothesiser=hypothesiser)

# Deleter
covariance_limit_for_delete = 500
deleter = CovarianceBasedDeleter(covar_trace_thresh=covariance_limit_for_delete)

# Initiator
s_prior_state = GaussianState([0, ©, ©, 0, 500, @], np.diag([@, 50, @, 50, 0, 50]))
from stonesoup.hypothesiser.distance import DistanceHypothesiser
from stonesoup.measures import Mahalanobis
hypothesiser = DistanceHypothesiser(
predictor,
jpda_updater,
measure=Mahalanobis(),
missed_distance=3

from stonesoup.dataassociator.neighbour import GNNWith2DAssignment
initiator_associator = GNNWith2DAssignment(hypothesiser)
initiator_deleter = CovarianceBasedDeleter(covar_trace_thresh=500)
initiator = MultiMeasurementInitiator(

prior_state=s_prior_state,

measurement_model=None,

deleter=initiator_deleter,

data_associator=initiator_associator,

updater=jpda_updater,

min_points=2

jpda_tracker = MultiTargetMixtureTracker(
initiator=initiator,
deleter=deleter,
detector=None,
data_associator=data_associator,
updater=jpda_updater

GM-LCC Tracker






from stonesoup.updater.pointprocess import LCCUpdater

from stonesoup.hypothesiser.distance import DistanceHypothesiser

from stonesoup.measures import Mahalanobis

from stonesoup.hypothesiser.gaussianmixture import GaussianMixtureHypothesiser
from stonesoup.mixturereducer.gaussianmixture import GaussianMixtureReducer
from stonesoup.types.state import TaggedWeightedGaussianState

from stonesoup.tracker.pointprocess import PointProcessMultiTargetTracker

# Updater
kalman_updater = ExtendedKalmanUpdater(measurement_model=None)
updater = LCCUpdater(
updater=kalman_updater,
clutter_spatial_density=clutter_spatial_density,
normalisation=True,
prob_detection=0.9,
prob_survival=0.9,
mean_number_of_false_alarms=clutter_model.clutter_rate,
variance_of_false_alarms=100

# Hypothesiser

kalman_predictor = ExtendedKalmanPredictor(truth_transition_model)

base_hypothesiser = DistanceHypothesiser(
predictor=kalman_predictor,
updater=kalman_updater,
measure=Mahalanobis(),
missed_distance=15,
include_all=False

)

hypothesiser = GaussianMixtureHypothesiser(
base_hypothesiser,
order_by_detection=True

# Reducer

reducer = GaussianMixtureReducer(
prune_threshold=1E-3,
pruning=True,
merge_threshold=200,
merging=True

# Birth component
birth_covar = CovarianceMatrix(np.diag([10000, 10, 10000, 10, 10000, 10]))
birth_component = TaggedWeightedGaussianState(

state_vector=[0, 0, 0, 0, 500, 0],

covar=birth_covar**2,

weight=0.5,

tag=TaggedWeightedGaussianState.BIRTH,

timestamp=start_time

# Tracker

gmlcc_tracker = PointProcessMultiTargetTracker(
detector=None,
hypothesiser=deepcopy(hypothesiser),
updater=deepcopy(updater),
reducer=deepcopy(reducer),
birth_component=deepcopy(birth_component),



extraction_threshold=0.90,

4: Make GM-PHD Tracker For Measurement Fusion

This tracker can use many of the same elements as the GM-LCC one.

from stonesoup.updater.pointprocess import PHDUpdater

updater = PHDUpdater(
kalman_updater,
clutter_spatial_density=clutter_spatial_density,
prob_detection=0.9,
prob_survival=0.9

meas_fusion_tracker = PointProcessMultiTargetTracker(
detector=None,
hypothesiser=deepcopy(hypothesiser),
updater=deepcopy(updater),
reducer=deepcopy(reducer),
birth_component=deepcopy(birth_component),
extraction_threshold=0.90,

5: Define a GM-PHD Tracker for Track Fusion

Track fusion using covariance intersection is implemented in Stone Soup using the

Chernoffupdater class. For use in a GM-PHD, we insert the chernoffupdater as the base updater,
instead of a typical kalmanupdater . The clutter_spatial_density parameter now refers to the
estimated intensity of false tracks. Since the previous tracker will (hopefully) have ignored some
of the clutter, we can use a smaller intensity than in the previous trackers. The omega parameter
is also adjustable. We will set it to 0.5 for now.

The remaining tracker parameters have been kept the same as the measurement fusion tracker
except where noted. This will ensure a fair comparison of the results.



from stonesoup.updater.chernoff import ChernoffUpdater
from stonesoup.measures import Euclidean

# Updater
ch_updater = ChernoffUpdater(measurement_model=None)
updater = PHDUpdater(
ch_updater,
clutter_spatial_density=1E-15,
prob_detection=0.9,
prob_survival=0.9

# Hypothesiser
# The states being used as measurements are in Cartesian space. We will use Euclidean distance 1in
# the :class: ~.DistanceHypothesiser™, meaning that we need a bigger missed distance than the
# previous hypothesiser which used the Mahalanobis distance.
kalman_predictor = ExtendedKalmanPredictor(truth_transition_model)
base_hypothesiser = DistanceHypothesiser(
kalman_predictor,
ch_updater,
Euclidean(),
missed_distance=300,
include_all=False
)

hypothesiser = GaussianMixtureHypothesiser(base_hypothesiser, order_by_ detection=True)

# Reducer
# The states tend to have lLow weights when they are first initialized using this method, so we
will
# keep the pruning threshold Low.
ch_reducer = GaussianMixtureReducer(
prune_threshold=1E-9,
pruning=True,
merge_threshold=200,
merging=True

# Birth component
birth_covar = CovarianceMatrix(np.diag([100000, 100, 100000, 100, 100000, 100]))
ch_birth_component = TaggedWeightedGaussianState(

state_vector=[0, 0, 0, 0, 500, 0],

covar=birth_covar**2,

weight=0.5,

tag=TaggedWeightedGaussianState.BIRTH,

timestamp=start_time

# Make tracker

track_fusion_tracker = PointProcessMultiTargetTracker(
detector=None,
hypothesiser=hypothesiser,
updater=updater,
reducer=deepcopy(ch_reducer),
birth_component=deepcopy(ch_birth_component),
extraction_threshold=0.90,



6: Make Metric Managers

We will track the metrics of each of the four trackers for comparison.

from stonesoup.metricgenerator.basicmetrics import BasicMetrics

from stonesoup.metricgenerator.ospametric import OSPAMetric

from stonesoup.metricgenerator.tracktotruthmetrics import SIAPMetrics

from stonesoup.metricgenerator.uncertaintymetric import SumofCovarianceNormsMetric
from stonesoup.dataassociator.tracktotrack import TrackToTruth

from stonesoup.metricgenerator.manager import SimpleManager

# Make the basic metric manager

basic_generator = BasicMetrics()

ospa_generator = OSPAMetric(c=10, p=1, measure=Euclidean([0, 2, 4]))

siap_generator = SIAPMetrics(position_measure=Euclidean(), velocity_measure=Euclidean())
uncertainty_generator = SumofCovarianceNormsMetric()

associator = TrackToTruth(association_threshold=30)

base_metric_manager = SimpleManager([basic_generator, ospa_generator, siap_generator,
uncertainty_generator],
associator=associator)

sensorl_mm, sensor2_mm = deepcopy(base_metric_manager), deepcopy(base_metric_manager)
meas_fusion_mm, track_fusion_mm = deepcopy(base_metric_manager), deepcopy(base_metric_manager)

7: Set Up the Detection Feeders

As one final step before running the simulation, we will write a little class which feeds the
detections for a single timestep. This makes sure that the two radars and the measurement
fusion tracker are getting the same measurements.

The track fusion tracker will also use the Tracks2GaussianbDetectionFeeder class to feed the tracks
as measurements. At each time step, the resultant live tracks from the JPDA and GM-LCC
trackers will be put into a Tracks2GaussianDetectionFeeder (USiNg the DummyDetector we write
below). The feeder will take the most recent state from each track and turn it into a

GaussianDetection Object. The set of detection objects will be returned and passed into the
tracker.



from stonesoup.feeder.track import Tracks2GaussianDetectionFeeder
from stonesoup.buffered_generator import BufferedGenerator
from stonesoup.reader.base import DetectionReader

class DummyDetector(DetectionReader):
def __init_ (self, *args, **kwargs):
self.current = kwargs['current']

@BufferedGenerator.generator_method

def detections_gen(self):
yield self.current

8: Run Simulation



sensorl_detections, sensor2_detections = [], []
jpda_tracks, gmlcc_tracks = set(), set()
meas_fusion_tracks, track_fusion_tracks = set(), set()

sim_generator = radar_simulator.detections_gen()
for t in range(num_steps):

# Run JPDA tracker from sensor 1

sld = next(sim_generator)

sensorl_detections.extend(s1d[1]) # hold in Llist for plotting

# Pass the detections into a DummyDetector and set it up as an iterable
jpda_tracker.detector = DummyDetector(current=sld)
jpda_tracker.__iter_ ()

# Run the tracker and store the resulting tracks

_, sensorl_tracks = next(jpda_tracker)
jpda_tracks.update(sensorl_tracks)

# Run GM-LCC tracker from sensor 2

s2d = next(sim_generator)

sensor2_detections.extend(s2d[1]) # hold in Llist for plotting

# Pass the detections into a DummyDetector and set it up as an iterable
gmlcc_tracker.detector = DummyDetector(current=s2d)

gmlcc_tracker._ _iter_ ()

# Run the tracker and store results

time, sensor2_tracks = next(gmlcc_tracker)
gmlcc_tracks.update(sensor2_tracks)

# Run the GM-PHD for measurement fusion. This one gets called twice, once for each set of
# detections. This ensures there 1is only one detection per target.
for detections in [sld, s2d]:
meas_fusion_tracker.detector = DummyDetector(current=detections)
meas_fusion_tracker.__iter__ ()
_, tracks = next(meas_fusion_tracker)
meas_fusion_tracks.update(tracks)

# Run the GM-PHD for track fusion. Similar to the measurement fusion, this tracker gets run
# twice, once for each set of tracks.
for tracks_as_meas in [sensorl_tracks, sensor2_tracks]:
dummy_detector = DummyDetector(current=[time, tracks_as_meas])
track_fusion_tracker.detector = Tracks2GaussianDetectionFeeder (dummy_detector)
track_fusion_tracker.__iter__ ()
_, tracks = next(track_fusion_tracker)
track_fusion_tracks.update(tracks)

# Add ground truth data to metric managers

truths = radar_simulator.groundtruth.current

for manager in [sensorl_mm, sensor2_mm, meas_fusion_mm, track_fusion_mm]:
manager.add_data(groundtruth_paths=truths[1], overwrite=False)

# Add measurements to metric managers
sensorl_mm.add_data(detections=s1d[1], overwrite=False)
sensor2_mm.add_data(detections=s2d[1], overwrite=False)
meas_fusion_mm.add_data(detections=s1d[1], overwrite=False)
meas_fusion_mm.add_data(detections=s2d[1], overwrite=False)
track_fusion_mm.add_data(detections=s1d[1], overwrite=False)
track_fusion_mm.add_data(detections=s2d[1], overwrite=False)



# Ensure that all tracks have been extracted from the trackers
jpda_tracks.update(jpda_tracker.tracks)
gmlcc_tracks.update(gmlcc_tracker.tracks)
meas_fusion_tracks.update(meas_fusion_tracker.tracks)
track_fusion_tracks.update(track_fusion_tracker.tracks)

# Remove tracks that have just one state in them as they were probably from clutter
jpda_tracks = set([track for track in jpda_tracks if len(track) > 1])

gmlcc_tracks = set([track for track in gmlcc_tracks if len(track) > 1])
meas_fusion_tracks = set([track for track in meas_fusion_tracks if len(track) > 1])
track_fusion_tracks = set([track for track in track_fusion_tracks if len(track) > 1])

# Add tracks to metric managers
sensorl_mm.add_data(tracks=jpda_tracks, overwrite=False)
sensor2_mm.add_data(tracks=gmlcc_tracks, overwrite=False)
meas_fusion_mm.add_data(tracks=meas_fusion_tracks, overwrite=False)
track_fusion_mm.add_data(tracks=track_fusion_tracks, overwrite=False)

O: Plot the Results

Next, we will plot all of the resulting tracks and measurements. This will be done in two plots.
The first plot will show all of the data, and the second plot will show a closer view of one
resultant track.

These plots are done in 2D to make them more readable. We invite the reader to explore the
plot interactively using the following line in an active Jupyter session.

%matplotlib widget



plotterl, plotter2 = Plotter(), Plotter()
for plotter in [plotterl, plotter2]:
plotter.plot_ground_truths(set(radar_simulator.groundtruth.groundtruth_paths), [0, 2],
color="black")
plotter.plot_measurements(sensorl_detections, [@, 2], color='orange', marker="*',
measurements_label="Measurements - Airborne Radar')
plotter.plot_measurements(sensor2_detections, [0, 2], color='blue', marker='*",
measurements_label="Measurements - Ground Radar')
plotter.plot_tracks(jpda_tracks, [0, 2], color="red',
track_label="Tracks - Airborne Radar (JPDAF)')
plotter.plot_tracks(gmlcc_tracks, [@, 2], color='purple',
track_label="'Tracks - Ground Radar (GM-LCC)')
plotter.plot_tracks(meas_fusion_tracks, [0, 2], color='green',
track_label="Tracks - Measurement Fusion (GM-PHD)'")
plotter.plot_tracks(track_fusion_tracks, [0, 2], color='pink',
track_label="Tracks - Covariance Intersection (GM-PHD)")

# Format the legend a bit. Set the position outside of the plot, and

# swap the order of the clutter and ground radar measurements

pos = plotter.ax.get_position()

plotter.ax.set_position([pos.x0, pos.y@, pos.width * 0.7, pos.height])

k = list(plotter.legend_dict.keys())

k[2], k[3] = k[3], k[2]

v = list(plotter.legend_dict.values())

v[2], v[3] = v[3], v[2]

plotter.ax.legend(handles=v, labels=k, loc='lower center', bbox_to_anchor=(0.5, -0.5))

plotterl.fig.show()

track = track_fusion_tracks.pop()

x_min = min([state.state_vector[@] for state in track])
x_max = max([state.state_vector[@] for state in track])
y_min = min([state.state_vector[2] for state in track])
y_max = max([state.state_vector[2] for state in track])

plotter2.ax.set_xlim(x_min-50, x_max+50)
plotter2.ax.set_ylim(y_min-50, y_max+50)

plotter2.fig.show()
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Now we will plot the metrics. First, we call a function for each sensor manager to calculate the
metrics.

sl_metrics = sensorl_mm.generate_metrics()

s2_metrics = sensor2_mm.generate_metrics()
meas_fusion_metrics = meas_fusion_mm.generate_metrics()
track_fusion_metrics = track_fusion_mm.generate_metrics()

Now we can plot them. The SIAP and OSPA metrics can be done together in a loop. The Track-
To-Truth ratio needs to be done separately so that it can be calculated at each timestep.



from matplotlib import pyplot as plt
from stonesoup.metricgenerator.tracktotruthmetrics import SIAPMetrics

# Legend labels for each type of tracker

labels = ['Airborne Radar (JPDAF)', 'Ground Radar (GM-LCC)', 'Measurement Fusion (GM-PHD)',
"Covariance Intersection (GM-PHD)']

linestyles = ['dashed', 'dotted', 'solid', 'dashdot']

# Iterate through the SIAP and OSPA metrics
for metric_name in ['SIAP Position Accuracy at times', 'SIAP Velocity Accuracy at times',
'SIAP Spuriousness at times', 'SIAP Completeness at times’,
'SIAP Ambiguity at times', 'OSPA distances', 'Sum of Covariance Norms
Metric']:
fig, ax = plt.subplots()

# Plot the metrics from each metric manager
for tracker_metrics, label, line in zip([sl_metrics, s2_metrics, meas_fusion_metrics,
track_fusion_metrics], labels, linestyles):
metrics = tracker_metrics[metric_name]
ax.plot([m.value for m in metrics.value], linewidth=2, label=label, linestyle=line)

# Set x and y labels and title
ax.set_xlabel("Time $(s)$")
if metric_name.startswith('OSPA"):
ax.set_title('OSPA Distance')
ax.set_ylabel('Distance")
ax.set_ylim(@, 12) # change y axis range for OSPA distance
elif metric_name.startswith('Sum of"):
ax.set_title(metric_name)
ax.set_ylabel('Sum of Covariance Norms')
else:
ax.set_title(metric_name)
ax.set_ylabel(metric_name[5:-9])

# Add units to y axis where applicable
if metric_name.startswith('SIAP Position') or metric_name.startswith('SIAP Velocity') \
or metric_name.startswith('OSPA"):
ax.set_ylabel(ax.yaxis.get_label().get_text() + ' $(m)$")

# Add Llegend
ax.legend(loc="center left', bbox_to_anchor=(1.0, 0.5))

# Plot Track to Truth Ratio
fig, ax = plt.subplots()
times = sensorl_mm.list_ timestamps()

# Iterate through the metric managers. For each one, go through the Llist of all timesteps
# and calculate the ratio at that time
for manager, label, line in zip([sensorl_mm, sensor2_mm, meas_fusion_mm, track_fusion_mm],
labels, linestyles):
ratios = []
for time in times:
num_tracks = SIAPMetrics.num_tracks_at_time(manager=manager, timestamp=time)
num_truths = SIAPMetrics.num_truths_at_time(manager=manager, timestamp=time)
ratios.append(num_tracks / num_truths)
plt.plot(ratios, linewidth=2, label=label, linestyle=line)

ax.set_title('Track-to-Truth Ratio')



ax.set_ylabel('Ratio")
ax.set_xlabel('Time $(s)$')
ax.legend(loc="center left', bbox_to_anchor=(1.0, 0.5))
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SIAP Spuriousness at times
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Total running time of the script: ( 0 minutes 22.303 seconds)

€ launch 'binder

& Download Python source code: Track2Track_Fusion_Example.py

& Download Jupyter notebook: Track2Track_Fusion_Example.ipynb
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