-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathbankNifty_10MinHMM.R
316 lines (284 loc) · 17.3 KB
/
bankNifty_10MinHMM.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
library(quantmod)
library(PerformanceAnalytics)
library(zoo)
library(RMySQL)
library(depmixS4)
hostName <- "localhost"
dbName <- "FuturesDB"
tbName <- "FuturesIntradayTenMinTable"
numPrevDaysForBackTest <- 100
numCurrDaysForBackTest <- 5
numTotalDaysForBackTest <- numPrevDaysForBackTest + numCurrDaysForBackTest
NDayLookforwardLowHigh <- 10 #Parameter used when classifing in sample data as in a trend or not
HmmLikelihoodTestLength <- 5 #How many days of data to calculate the likehood ratio on to compare models
txnCostinPerc <- 0.00057709
# Dates
sql_conn <- dbConnect(MySQL(), user = "root", password = "", dbname = dbName, host = hostName)
dates_sql_command <- paste("SELECT DISTINCT Date FROM FuturesIntradayTenMinTable ORDER BY Date DESC LIMIT ",
numTotalDaysForBackTest, ";", sep = "")
dates_sql_result <- dbGetQuery(sql_conn, dates_sql_command)
dbDisconnect(sql_conn)
lastTradingDays <- rev(dates_sql_result[,1])
prevDates <- as.character("")
for(day in 1:(length(lastTradingDays) - numCurrDaysForBackTest)){
prevDates <- paste(prevDates, "'", lastTradingDays[day], "',", sep = "")
}
prevDates <- substr(prevDates, 1, nchar(prevDates) - 1)
currDates <- as.character("")
for(day in 1:numCurrDaysForBackTest){
currDates <- paste(currDates, "'", lastTradingDays[numPrevDaysForBackTest + day], "',", sep = "")
}
currDates <- substr(currDates, 1, nchar(currDates) - 1)
# Symbol Data from DB
#symbol <- "NIFTY-1M"
symbol <- "BANKNIFTY-1M"
sql_conn <- dbConnect(MySQL(), user = "root", password = "", dbname = dbName, host = hostName)
prev_quote_sql_command <- paste("SELECT Date, Time, Open, High, Low, Close, Volume FROM ", dbName, ".",
tbName, " WHERE IchartsCode = '", symbol, "' AND Date IN (", prevDates, ");", sep = "")
prev_quote_sql_result <- dbGetQuery(sql_conn, prev_quote_sql_command)
curr_quote_sql_command <- paste("SELECT Date, Time, Open, High, Low, Close, Volume FROM ", dbName, ".",
tbName, " WHERE IchartsCode = '", symbol, "' AND Date IN (", currDates, ");", sep = "")
curr_quote_sql_result <- dbGetQuery(sql_conn, curr_quote_sql_command)
dbDisconnect(sql_conn)
# Data formatting in XTS
prev_dateTime <- paste(prev_quote_sql_result$Date, prev_quote_sql_result$Time, sep = " ")
prev_timeIndx <- strptime(prev_dateTime, format = "%Y-%m-%d %H:%M:%S")
prev_prices <- prev_quote_sql_result[, c("Open", "High", "Low", "Close", "Volume")]
curr_dateTime <- paste(curr_quote_sql_result$Date, curr_quote_sql_result$Time, sep = " ")
curr_timeIndx <- strptime(curr_dateTime, format = "%Y-%m-%d %H:%M:%S")
curr_prices <- curr_quote_sql_result[, c("Open", "High", "Low", "Close", "Volume")]
stockPriceXtsList <- list()
stockPriceXtsList[["prev"]] <- as.xts(prev_prices, prev_timeIndx)
stockPriceXtsList[["curr"]] <- as.xts(curr_prices, curr_timeIndx)
prev_time_index <- as.POSIXct(index(stockPriceXtsList[["prev"]]), format = "%Y-%m-%d %H:%M:%S")
stockPriceXtsList[["prev"]] <- apply(stockPriceXtsList[["prev"]], 2, as.numeric)
stockPriceXtsList[["prev"]] <- xts(stockPriceXtsList[["prev"]], prev_time_index)
banknifty_prev_PriceList <- stockPriceXtsList[["prev"]]
curr_time_index <- as.POSIXct(index(stockPriceXtsList[["curr"]]), format = "%Y-%m-%d %H:%M:%S")
stockPriceXtsList[["curr"]] <- apply(stockPriceXtsList[["curr"]], 2, as.numeric)
stockPriceXtsList[["curr"]] <- xts(stockPriceXtsList[["curr"]], curr_time_index)
banknifty_curr_PriceList <- stockPriceXtsList[["curr"]]
# Closing price vector for plotting
bankNifty_prev_Cl_Vector <- as.vector(banknifty_prev_PriceList$Close)
bankNifty_curr_Cl_Vector <- as.vector(banknifty_curr_PriceList$Close)
# Returns
banknifty_prev_logRet <- log(banknifty_prev_PriceList$Close) - log(banknifty_prev_PriceList$Open) - txnCostinPerc
banknifty_curr_logRet <- log(banknifty_curr_PriceList$Close) - log(banknifty_curr_PriceList$Open) - txnCostinPerc
# Function to convert intermediate of buy-sell trigger to remain inTrade
ConvertTofullSignal <- function(signal){
results <- rep(0,length(signal))
intrade <- F
for(i in seq(1, length(signal))){
if(signal[i] == -1){
intrade <- F
}
if(signal[i] == 1 || intrade){
results[i] <- 1
intrade <- T
}
}
return(results)
}
#Generate long trend signal
LongTrendSignal <- rep(0, nrow(banknifty_prev_PriceList))
for(i in seq(1, nrow(banknifty_prev_PriceList) - NDayLookforwardLowHigh)){
dataBlock <- Cl(banknifty_prev_PriceList[seq(i, i+NDayLookforwardLowHigh), ])
if(coredata(Cl(banknifty_prev_PriceList[i, ])) == min(coredata(dataBlock))){
LongTrendSignal[i] <- 1
}
if(coredata(Cl(banknifty_prev_PriceList[i, ])) == max(coredata(dataBlock))){
LongTrendSignal[i] <- -1
}
}
LongTrendSignal <- ConvertTofullSignal(LongTrendSignal)
#Generate short trend signal
ShortTrendSignal <- rep(0, nrow(banknifty_prev_PriceList))
for(i in seq(1, nrow(banknifty_prev_PriceList) - NDayLookforwardLowHigh)){
dataBlock <- Cl(banknifty_prev_PriceList[seq(i, i+NDayLookforwardLowHigh),])
if(coredata(Cl(banknifty_prev_PriceList[i, ])) == max(coredata(dataBlock))){
ShortTrendSignal[i] <- 1
}
if(coredata(Cl(banknifty_prev_PriceList[i, ])) == min(coredata(dataBlock))){
ShortTrendSignal[i] <- -1
}
}
ShortTrendSignal <- ConvertTofullSignal(ShortTrendSignal)
# # Plotting training data
# par(mfrow=c(3, 1))
# plot(bankNifty_prev_Cl_Vector, type = "l")
# plot(LongTrendSignal, type="l")
# plot(ShortTrendSignal, type="l")
# Function to Extract a list of varying length features for each signal/class label
CreateListOfMatrixFeatures <- function(features,signal){
results <- list()
extract <- F
for(i in seq(1, length(signal))){
if(signal[i] == 1 && !extract){
startIndex <- i
extract <- T
}
if(signal[i] == 0 && extract){
endIndex <- i-1
dataBlock <- features[startIndex : endIndex, ]
extract <- F
#print(dataBlock)
results[[length(results) + 1]] <- as.matrix(dataBlock)
}
# if(i == length(signal) && extract){
# endIndex <- i
# dataBlock <- features[startIndex : endIndex, ]
# extract <- F
# results[[length(results) + 1]] <- as.matrix(dataBlock)
# }
}
return(results)
}
#=============
#HMM Training
#=============
# Generate the features that describe the data & split into training and out of sample sets
banknifty_prev_features <- cbind(banknifty_prev_logRet,
Hi(banknifty_prev_PriceList)/Lo(banknifty_prev_PriceList),
Hi(banknifty_prev_PriceList)/Op(banknifty_prev_PriceList),
Hi(banknifty_prev_PriceList)/Cl(banknifty_prev_PriceList),
Op(banknifty_prev_PriceList)/Cl(banknifty_prev_PriceList),
Lo(banknifty_prev_PriceList)/Cl(banknifty_prev_PriceList),
Lo(banknifty_prev_PriceList)/Op(banknifty_prev_PriceList))
colnames(banknifty_prev_features) <- c("logRet", "HiLo", "HiOp", "HiCl", "OpCl", "LoCl", "LoOp")
banknifty_curr_features <- cbind(banknifty_curr_logRet,
Hi(banknifty_curr_PriceList)/Lo(banknifty_curr_PriceList),
Hi(banknifty_curr_PriceList)/Op(banknifty_curr_PriceList),
Hi(banknifty_curr_PriceList)/Cl(banknifty_curr_PriceList),
Op(banknifty_curr_PriceList)/Cl(banknifty_curr_PriceList),
Lo(banknifty_curr_PriceList)/Cl(banknifty_curr_PriceList),
Lo(banknifty_curr_PriceList)/Op(banknifty_curr_PriceList))
colnames(banknifty_curr_features) <- c("logRet", "HiLo", "HiOp", "HiCl", "OpCl", "LoCl", "LoOp")
# For each long / short position extract the corresponding features data and create list of them
banknifty_prev_LongFeaturesList <- CreateListOfMatrixFeatures(banknifty_prev_features, LongTrendSignal)
banknifty_prev_LongFeaturesListDF <- data.frame(stringsAsFactors = F)
for(i in 1:length(banknifty_prev_LongFeaturesList)){
banknifty_prev_LongFeaturesListDF <- rbind(banknifty_prev_LongFeaturesListDF, banknifty_prev_LongFeaturesList[[i]])
}
banknifty_prev_ShortFeaturesList <- CreateListOfMatrixFeatures(banknifty_prev_features, ShortTrendSignal)
banknifty_prev_ShortFeaturesListDF <- data.frame(stringsAsFactors = F)
for(i in 1:length(banknifty_prev_ShortFeaturesList)){
banknifty_prev_ShortFeaturesListDF <- rbind(banknifty_prev_ShortFeaturesListDF, banknifty_prev_ShortFeaturesList[[i]])
}
# Train the HMM models
# seedReturnsDF <- data.frame(stringsAsFactors = F)
# for(seedNum in 1:100){
# set.seed(seedNum)
set.seed(34)
longModelHMM <- depmix(list(logRet~1, HiLo~1, HiOp~1, HiCl~1, OpCl~1, LoCl~1, LoOp~1),
data = banknifty_prev_LongFeaturesListDF, nstates=3,
family = list(gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian()))
longModelHMMFit <- fit(longModelHMM, verbose = FALSE)
shortModelHMM <- depmix(list(logRet~1, HiLo~1, HiOp~1, HiCl~1, OpCl~1, LoCl~1, LoOp~1),
data = banknifty_prev_ShortFeaturesListDF, nstates=3,
family = list(gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian()))
shortModelHMMFit <- fit(shortModelHMM, verbose = FALSE)
# Will take NDayLookforwardLowHigh days of data and calculate the rolling log likelihood for each HMM model
# banknifty_prev_LongLikelihood <- rollapply(banknifty_prev_features, HmmLikelihoodTestLength, align="right",
# na.pad=T, by.column=F, function(x) {
# xModelHMM <- depmix(list(logRet~1, HiLo~1, HiOp~1, HiCl~1, OpCl~1, LoCl~1, LoOp~1),
# data = x, nstates=3,
# family = list(gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian()))
# xModelHMM <- setpars(xModelHMM, getpars(longModelHMMFit))
# forwardbackward(xModelHMM)$logLike
# }
# )
# banknifty_prev_ShortLikelihood <- rollapply(banknifty_prev_features, HmmLikelihoodTestLength, align="right",
# na.pad=T, by.column=F, function(x) {
# xModelHMM <- depmix(list(logRet~1, HiLo~1, HiOp~1, HiCl~1, OpCl~1, LoCl~1, LoOp~1),
# data = x, nstates=3,
# family = list(gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian()))
# xModelHMM <- setpars(xModelHMM, getpars(shortModelHMMFit))
# forwardbackward(xModelHMM)$logLike
# }
# )
banknifty_curr_LongLikelihood <- rollapply(banknifty_curr_features, HmmLikelihoodTestLength, align="right",
na.pad=T, by.column=F, function(x) {
xModelHMM <- depmix(list(logRet~1, HiLo~1, HiOp~1, HiCl~1, OpCl~1, LoCl~1, LoOp~1),
data = x, nstates=3,
family = list(gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian()))
xModelHMM <- setpars(xModelHMM, getpars(longModelHMMFit))
forwardbackward(xModelHMM)$logLike
}
)
banknifty_curr_ShortLikelihood <- rollapply(banknifty_curr_features, HmmLikelihoodTestLength, align="right",
na.pad=T, by.column=F, function(x) {
xModelHMM <- depmix(list(logRet~1, HiLo~1, HiOp~1, HiCl~1, OpCl~1, LoCl~1, LoOp~1),
data = x, nstates=3,
family = list(gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian(), gaussian()))
xModelHMM <- setpars(xModelHMM, getpars(shortModelHMMFit))
forwardbackward(xModelHMM)$logLike
}
)
# Create signals for plot / trading
banknifty_curr_LongTrendSignalForPlot <- 1 * (banknifty_curr_LongLikelihood > banknifty_curr_ShortLikelihood)
banknifty_curr_LongTrendSignalForPlot[banknifty_curr_LongTrendSignalForPlot == 0] <- NaN
banknifty_curr_LongTrendSignalForPlot <- banknifty_curr_LongTrendSignalForPlot * Cl(banknifty_curr_PriceList) - 10 #10 shift for plotting
banknifty_curr_ShortTrendSignalForPlot <- 1 * (banknifty_curr_LongLikelihood < banknifty_curr_ShortLikelihood)
banknifty_curr_ShortTrendSignalForPlot[banknifty_curr_ShortTrendSignalForPlot == 0] <- NaN
banknifty_curr_ShortTrendSignalForPlot <- banknifty_curr_ShortTrendSignalForPlot * Cl(banknifty_curr_PriceList) + 10 #10 shift for plotting
# Calculate Out of Sample Returns
banknifty_curr_LongReturns <- Lag((1 * (banknifty_curr_LongLikelihood > banknifty_curr_ShortLikelihood))) * (banknifty_curr_logRet)
banknifty_curr_LongReturns[is.na(banknifty_curr_LongReturns)] <- 0
banknifty_curr_CumLongReturns <- log(cumprod(1 + banknifty_curr_LongReturns))
banknifty_curr_ShortReturns <- Lag(-1 * ( 1 * (banknifty_curr_LongLikelihood < banknifty_curr_ShortLikelihood))) * (banknifty_curr_logRet)
banknifty_curr_ShortReturns[is.na(banknifty_curr_ShortReturns)] <- 0
banknifty_curr_CumShortReturns <- log(cumprod(1 + banknifty_curr_ShortReturns))
banknifty_curr_TotalReturns <- banknifty_curr_LongReturns + banknifty_curr_ShortReturns
banknifty_curr_TotalReturns[is.na(banknifty_curr_TotalReturns)] <- 0
banknifty_curr_CumTotalReturns <- log(cumprod(1 + banknifty_curr_TotalReturns))
finalRet <- as.numeric(banknifty_curr_CumTotalReturns[length(banknifty_curr_CumTotalReturns), 1])
# seedReturnsDF <- rbind(seedReturnsDF, c(seedNum, finalRet))
# colnames(seedReturnsDF) <- c("SeedNum", "FinalReturn")
# }
# # Plotting
# dev.new()
# layout(1:3)
#
# plot(as.vector(banknifty_curr_PriceList$Close), main = "CL PRICE - HMM Trend Following - Out of Sample", type = "l")
# lines(as.vector(banknifty_curr_LongTrendSignalForPlot[, 1]), col = "green", type = "l")
# lines(as.vector(banknifty_curr_ShortTrendSignalForPlot[, 1]), col = "red", type = "l")
# legend(x = 'bottomright', c("Closing Price", "Long Signal", "Short Signal"), fill = c("black", "green", "red"), bty = 'n')
#
# plot(as.vector(banknifty_curr_LongLikelihood[, 1]), main = "LOG LIKELIHOOD - HMM model - Out Of Sample", type = "l")
# lines(as.vector(banknifty_curr_LongLikelihood[, 1]), col = "green", type = "l")
# lines(as.vector(banknifty_curr_ShortLikelihood[, 1]), col = "red", type = "l")
# legend(x = 'bottomright', c("Long HMM Likelihood", "Short HMM Likelihood"), fill = c("green", "red"), bty = 'n')
#
# plot(as.vector(banknifty_curr_CumTotalReturns[, 1]), main = "STRATEGY RETURNS - HMM Trend Following - Out of Sample", type = "l")
# lines(as.vector(banknifty_curr_CumLongReturns[, 1]), col = "green", type = "l")
# lines(as.vector(banknifty_curr_CumShortReturns[, 1]), col = "red", type = "l")
# legend(x = 'bottomright', c("Total Returns", "Long Trend Returns", "Short Trend Returns"), fill = c("black", "green", "red"), bty = 'n')
# # Volatility Plotting
# dev.new()
# layout(1:3)
#
# set.seed(1)
# ATRperiod <- 10
# # plot(as.vector(banknifty_curr_PriceList$Close[-c(1:ATRperiod), ]), main = "CL PRICE - HMM Trend Following - Out of Sample", type = "l")
# # lines(as.vector(banknifty_curr_LongTrendSignalForPlot[-c(1:ATRperiod), 1]), col = "green", type = "l")
# # lines(as.vector(banknifty_curr_ShortTrendSignalForPlot[-c(1:ATRperiod), 1]), col = "red", type = "l")
# # legend(x = 'bottomright', c("Closing Price", "Long Signal", "Short Signal"), fill = c("black", "green", "red"), bty = 'n')
#
# volATRindicator <- ATR(banknifty_curr_PriceList[,2:4], n = ATRperiod)
# volATR <- volATRindicator[,2]
#
# volLogReturns <- log(banknifty_curr_PriceList$Close) - log(banknifty_curr_PriceList$Open)
# volModelData <- data.frame(volLogReturns, volATR)
# volModelData <- volModelData[-c(1:ATRperiod),]
# colnames(volModelData)<-c("LogReturns","ATR") #name our columns
#
# volHMM <- depmix(list(LogReturns~1, ATR~1), data = volModelData, nstates=3, family = list(gaussian(), gaussian()))
# volHMMfit <- fit(volHMM, verbose = FALSE)
# volHMMpost<-posterior(volHMMfit)
# volHMMpostDF <- data.frame(volModelData, volHMMpost)
#
# plot(as.vector(volATR[-c(1:ATRperiod), ]), type = "l")
# plot(as.vector(banknifty_curr_CumTotalReturns[-c(1:ATRperiod), 1]), type = "l")
# plot(as.vector(volHMMpostDF$state), type = "l")
# Sharpe Ratio
#print(SharpeRatio.annualized(banknifty_curr_TotalReturns))