-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinductions.v
94 lines (75 loc) · 2.16 KB
/
inductions.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
Set Implicit Arguments.
Require Import Omega.
Section Ind_base_k.
Variable P : nat -> Prop.
Variable k : nat.
Hypothesis Pk : P k.
Hypothesis PS : forall n, P n -> k <= n -> P (S n).
Theorem P_ind_base_k : forall n, k <= n -> P n.
induction n; inversion 1; subst; auto.
Qed.
End Ind_base_k.
Section strong_ind.
Variable P : nat -> Prop.
Hypothesis H : forall n, (forall m, m < n -> P m) -> P n.
Lemma strong_ind' : forall n m, m < n -> P m.
induction n; intros; intuition; omega.
Qed.
Theorem strong_ind : forall n, P n.
intros; apply strong_ind' with (S n); auto.
Qed.
End strong_ind.
Require Import Even.
Section Ind_even.
Variable P : nat -> Prop.
Hypothesis P_base : P 0.
Hypothesis P_step : forall n, P n -> even n -> P (S (S n)).
Theorem P_ind_even : forall n, even n -> P n.
induction n using strong_ind; intuition.
repeat match goal with
| _ => solve [auto]
| H: even _ |- _ => inversion H; clear H; subst
| H: odd _ |- _ => inversion H; clear H; subst
end.
Qed.
End Ind_even.
Definition nzn: Type := {n: nat | n <> O}.
Section Ind_nzn.
Lemma S_nzn : forall n, S n <> 0.
red; intros; discriminate.
Qed.
Definition one : nzn.
refine (exist _ 1 _); apply S_nzn.
Defined.
Definition Succ (n : nzn) : nzn.
refine (match n with
| exist v p => exist _ (S v) _
end); apply S_nzn.
Defined.
Variable P : nzn -> Type.
Hypothesis P_base : P one.
Hypothesis P_step : forall n, P n -> P (Succ n).
Hypothesis proofIrr : forall n (H H': S n <> 0), H = H'.
Theorem nzn_rect : forall n, P n.
destruct n.
induction x; try congruence.
destruct (eq_nat_dec x 0); subst.
{
replace n with (@S_nzn 0); auto.
}
{
specialize (IHx n0).
specialize (P_step IHx).
replace n with (@S_nzn x); auto.
}
Defined.
End Ind_nzn.
Section Ind_nzn'.
Variable P : nzn -> Prop.
Hypothesis P_base : P one.
Hypothesis P_step : forall n, P n -> P (Succ n).
Hypothesis proofIrr : forall n (H H': S n <> 0), H = H'.
Theorem nzn_ind : forall n, P n.
intros; apply nzn_rect; auto.
Qed.
End Ind_nzn'.