-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlosses.py
251 lines (201 loc) · 7.85 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import tensorflow as tf
import keras.backend as K
import neuron.layers as nrn_layers
import numpy as np
def ncc(I, J):
"""
Code comes from:
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration
Adrian V. Dalca, Guha Balakrishnan, John Guttag, Mert R. Sabuncu
MICCAI 2018.
"""
eps = 1e-5
# assumes I, J are sized [batch_size, *vol_shape, nb_feats]
ndims = len(I.get_shape().as_list()) - 2
assert ndims in [1, 2, 3], "volumes should be 1 to 3 dimensions. found: %d" % ndims
win = [9] * ndims
# get convolution function
conv_fn = getattr(tf.nn, 'conv%dd' % ndims)
# compute CC squares
I2 = I * I
J2 = J * J
IJ = I * J
# compute filters
sum_filt = tf.ones([*win, 1, 1])
strides = [1] * (ndims + 2)
padding = 'SAME'
# compute local sums via convolution
I_sum = conv_fn(I, sum_filt, strides, padding)
J_sum = conv_fn(J, sum_filt, strides, padding)
I2_sum = conv_fn(I2, sum_filt, strides, padding)
J2_sum = conv_fn(J2, sum_filt, strides, padding)
IJ_sum = conv_fn(IJ, sum_filt, strides, padding)
# compute cross correlation
win_size = np.prod(win)
u_I = I_sum / win_size
u_J = J_sum / win_size
cross = IJ_sum - u_J * I_sum - u_I * J_sum + u_I * u_J * win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I * u_I * win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J * u_J * win_size
cc = cross * cross / (I_var * J_var + eps)
# return negative cc.
return -tf.reduce_mean(cc)
def ncc_l(I, J, flow, l):
"""
local (over window) normalized cross correlation
"""
eps = 1e-5
J = nrn_layers.SpatialTransformer(interp_method='linear', indexing='ij')([J, flow])
ndims = len(I.get_shape().as_list()) - 2
assert ndims in [1, 2, 3], "volumes should be 1 to 3 dimensions. found: %d" % ndims
# set window size
win = [l] * ndims
# get convolution function
conv_fn = getattr(tf.nn, 'conv%dd' % ndims)
# compute CC squares
I2 = I * I
J2 = J * J
IJ = I * J
# compute filters
sum_filt = tf.ones([*win, 1, 1])
strides = [1] * (ndims + 2)
padding = 'SAME'
# compute local sums via convolution
I_sum = conv_fn(I, sum_filt, strides, padding)
J_sum = conv_fn(J, sum_filt, strides, padding)
I2_sum = conv_fn(I2, sum_filt, strides, padding)
J2_sum = conv_fn(J2, sum_filt, strides, padding)
IJ_sum = conv_fn(IJ, sum_filt, strides, padding)
# compute cross correlation
win_size = np.prod(win)
u_I = I_sum / win_size
u_J = J_sum / win_size
cross = IJ_sum - u_J * I_sum - u_I * J_sum + u_I * u_J * win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I * u_I * win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J * u_J * win_size
cc = cross * cross / (I_var * J_var + eps)
# return negative cc.
return -tf.reduce_mean(cc)
def multirobust_ncc(x1, x2, flows_pyramid, weights, num_levels, name = 'multi_loss'):
with tf.name_scope(name) as ns:
l_list = [5, 7]
loss = 0.
for l, (weight, fs) in enumerate(zip(weights, flows_pyramid)):
# Calculate l1 loss
factor = (1/2)**(num_levels-l) #
zoomed_x1 = nrn_layers.Resize(zoom_factor=factor, interp_method='linear')(x1)
zoomed_x2 = nrn_layers.Resize(zoom_factor=factor, interp_method='linear')(x2)
loss_level = ncc_l(zoomed_x1, zoomed_x2, fs, l_list[l])
loss += weight*loss_level
return loss
def Grad(y, penalty='l2'):
"""
Code comes from:
Unsupervised Learning for Fast Probabilistic Diffeomorphic Registration
Adrian V. Dalca, Guha Balakrishnan, John Guttag, Mert R. Sabuncu
MICCAI 2018.
"""
ndims = 3
df = [None] * ndims
for i in range(ndims):
d = i + 1
# permute dimensions to put the ith dimension first
r = [d, *range(d), *range(d + 1, ndims + 2)]
y = K.permute_dimensions(y, r)
dfi = y[1:, ...] - y[:-1, ...]
# permute back
# note: this might not be necessary for this loss specifically,
# since the results are just summed over anyway.
r = [*range(1, d + 1), 0, *range(d + 1, ndims + 2)]
df[i] = K.permute_dimensions(dfi, r)
if penalty == 'l2':
df = [tf.reduce_mean(f * f) for f in df]
else:
# assert penalty == 'l2', 'penalty can only be l1 or l2. Got: %s' % penalty
df = [tf.reduce_mean(tf.abs(f)) for f in df]
return tf.add_n(df) / len(df)
def adj_filt(ndims):
"""
compute an adjacency filter that, for each feature independently,
has a '1' in the immediate neighbor, and 0 elsewehre.
so for each filter, the filter has 2^ndims 1s.
the filter is then setup such that feature i outputs only to feature i
"""
# inner filter, that is 3x3x...
filt_inner = np.zeros([3] * ndims)
for j in range(ndims):
o = [[1]] * ndims
o[j] = [0, 2]
filt_inner[np.ix_(*o)] = 1
# full filter, that makes sure the inner filter is applied
# ith feature to ith feature
filt = np.zeros([3] * ndims + [ndims, ndims])
for i in range(ndims):
filt[..., i, i] = filt_inner
return filt
def degree_matrix(vol_shape):
# get shape stats
ndims = len(vol_shape)
sz = [*vol_shape, ndims]
# prepare conv kernel
conv_fn = getattr(tf.nn, 'conv%dd' % ndims)
# prepare tf filter
z = K.ones([1] + sz)
filt_tf = tf.convert_to_tensor(adj_filt(ndims), dtype=tf.float32)
strides = [1] * (ndims + 2)
return conv_fn(z, filt_tf, strides, "SAME")
def prec_loss(y_pred):
"""
a more manual implementation of the precision matrix term
mu * P * mu where P = D - A
where D is the degree matrix and A is the adjacency matrix
mu * P * mu = 0.5 * sum_i mu_i sum_j (mu_i - mu_j) = 0.5 * sum_i,j (mu_i - mu_j) ^ 2
where j are neighbors of i
Note: could probably do with a difference filter,
but the edges would be complicated unless tensorflow allowed for edge copying
"""
vol_shape = y_pred.get_shape().as_list()[1:-1]
ndims = len(vol_shape)
sm = 0
for i in range(ndims):
d = i + 1
# permute dimensions to put the ith dimension first
r = [d, *range(d), *range(d + 1, ndims + 2)]
y = K.permute_dimensions(y_pred, r)
df = y[1:, ...] - y[:-1, ...]
sm += K.mean(df * df)
return 0.5 * sm / ndims
def kl_loss(y_pred, prior_lambda=10):
"""
KL loss
y_pred is assumed to be D*2 channels: first D for mean, next D for logsigma
D (number of dimensions) should be 1, 2 or 3
y_true is only used to get the shape
"""
# prepare inputs
# ndims = len(y_pred.get_shape()) - 2
ndims = y_pred.get_shape().as_list()[-1]
ndims = np.int(ndims/2)
mean = y_pred[..., 0:ndims]
log_sigma = y_pred[..., ndims:]
flow_vol_shape = mean.get_shape().as_list()[1:-1]
# compute the degree matrix (only needs to be done once)
# we usually can't compute this until we know the ndims,
# which is a function of the data
D = degree_matrix(flow_vol_shape)
# sigma terms
sigma_term = prior_lambda * D * tf.exp(log_sigma) - log_sigma
sigma_term = K.mean(sigma_term)
# precision terms
# note needs 0.5 twice, one here (inside self.prec_loss), one below
prec_term = prior_lambda * prec_loss(mean)
# combine terms
return 0.5 * ndims * (sigma_term + prec_term) # ndims because we averaged over dimensions as well
def multirobust_MAP(pyramid_params_0, pyramid_params_1, weights, name='multi_map_loss'):
with tf.name_scope(name) as ns:
loss = 0.
for l, (weight, fp0, fp1) in enumerate(zip(weights, pyramid_params_0, pyramid_params_1)):
loss_level = kl_loss(fp0)
loss_level += kl_loss(fp1)
loss += weight * loss_level
return loss