-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain_Utils.py
72 lines (60 loc) · 2.31 KB
/
Train_Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# RL training
import numpy as np
class RandomProcess:
def reset_states(self):
pass
class AnnealedGaussianProcess(RandomProcess):
def __init__(self, mu, sigma, sigma_min, n_steps_annealing):
self.mu = mu
self.sigma = sigma
self.n_steps = 0
if sigma_min is not None:
self.m = -float(sigma - sigma_min) / float(n_steps_annealing)
self.c = sigma
self.sigma_min = sigma_min
else:
self.m = 0.
self.c = sigma
self.sigma_min = sigma
@property
def current_sigma(self):
sigma = max(self.sigma_min, self.m * float(self.n_steps) + self.c)
return sigma
class OrnsteinUhlenbeckProcess(AnnealedGaussianProcess):
def __init__(self, theta, mu=0., sigma=0.2,
dt=1e-2, x0=None, size=1,
sigma_min=None, n_steps_annealing=1000):
super(OrnsteinUhlenbeckProcess,
self).__init__(mu=mu,
sigma=sigma,
sigma_min=sigma_min,
n_steps_annealing=n_steps_annealing)
self.theta = theta
self.mu = mu
self.dt = dt
self.x0 = x0
self.size = size
self.reset_states()
def sample(self):
x = self.x_prev + \
self.theta * (self.mu -
self.x_prev) * self.dt + (
self.current_sigma * np.sqrt(self.dt) *
np.random.normal(size=self.size)
)
self.x_prev = x
self.n_steps += 1
return x
def reset_states(self):
self.x_prev = self.x0 if self.x0 is not None else np.zeros(self.size)
##############################################################################################################
# MADDPG Train Part
def soft_update(target, source, t):
for target_param, source_param in zip(target.parameters(),
source.parameters()):
target_param.data.copy_(
(1 - t) * target_param.data + t * source_param.data)
def hard_update(target, source):
for target_param, source_param in zip(target.parameters(),
source.parameters()):
target_param.data.copy_(source_param.data)