-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcarbon_footprint_node.py
89 lines (75 loc) · 2.69 KB
/
carbon_footprint_node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2023 SustainML Consortium
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SustainML Carbon Footprint Node Implementation."""
from sustainml_py.nodes.CarbonFootprintNode import CarbonFootprintNode
from carbontracker.tracker import CarbonTracker
from carbontracker import parser
# Manage signaling
import signal
import threading
import time
# Whether to go on spinning or interrupt
running = False
# Signal handler
def signal_handler(sig, frame):
print("\nExiting")
CarbonFootprintNode.terminate()
global running
running = False
# User Callback implementation
# Inputs: ml_model, user_input, hw
# Outputs: node_status, co2
def task_callback(ml_model, user_input, hw, node_status, co2):
# Time to estimate Wh based on W (in hours)
default_time = hw.latency() / (3600 * 1000) # ms to h
energy_consump = hw.power_consumption()*default_time # W * h = Wh
log_directory = "/tmp/logs/carbontracker" # temp log dir for reading carbon data results
# Define CarbonTracker
tracker = CarbonTracker(log_dir=log_directory, epochs=1)
# Start measuring
tracker.epoch_start()
# Execute the training task
# ...
time.sleep(2) # 2 seconds sleep as training (temporal approach)
# Stop measuring
tracker.epoch_end()
tracker.stop()
# Retrieve carbon information
logs = parser.parse_all_logs(log_dir=log_directory)
first_log = logs[0]
carbon = first_log['pred']['co2eq (g)']
intensity = 0.0
if energy_consump > 0:
intensity = carbon/energy_consump
# populate carbon footprint information
co2.carbon_footprint(carbon)
co2.energy_consumption(energy_consump)
co2.carbon_intensity(intensity)
# Main workflow routine
def run():
global running
running = True
node = CarbonFootprintNode(callback=task_callback)
node.spin()
# Call main in program execution
if __name__ == '__main__':
signal.signal(signal.SIGINT, signal_handler)
"""Python does not process signals async if
the main thread is blocked (spin()) so, tun
user work flow in another thread """
runner = threading.Thread(target=run)
runner.start()
while running:
time.sleep(1)
runner.join()