forked from StartleStars/DeepMindBreak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·112 lines (75 loc) · 3.97 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import tensorflow as tf
import os
import numpy as np
import module as mm
#suppress tensorflow deprecation warnings
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
class InpaintNN:
def __init__(self, input_height=256, input_width=256, batch_size = 1, bar_model_name=None, bar_checkpoint_name=None, mosaic_model_name=None, mosaic_checkpoint_name = None, is_mosaic=False):
self.bar_model_name = bar_model_name
self.bar_checkpoint_name = bar_checkpoint_name
self.mosaic_model_name = mosaic_model_name
self.mosaic_checkpoint_name = mosaic_checkpoint_name
self.is_mosaic = is_mosaic
self.input_height = input_height
self.input_width = input_width
self.batch_size = batch_size
self.check_model_file()
self.build_model()
def check_model_file(self):
if not os.path.exists(self.bar_model_name) or not os.path.exists(self.mosaic_model_name) :
print("\nMissing Train Model, download train model")
print("Read : https://github.com/deeppomf/DeepCreamPy/blob/master/docs/INSTALLATION.md#run-code-yourself \n")
exit(-1)
def build_model(self):
# ------- variables
self.X = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, 3])
self.Y = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, 3])
self.MASK = tf.placeholder(tf.float32, [self.batch_size, self.input_height, self.input_width, 3])
IT = tf.placeholder(tf.float32)
# ------- structure
input = tf.concat([self.X, self.MASK], 3)
vec_en = mm.encoder(input, reuse=False, name='G_en')
vec_con = mm.contextual_block(vec_en, vec_en, self.MASK, 3, 50.0, 'CB1', stride=1)
I_co = mm.decoder(vec_en, self.input_height, self.input_height, reuse=False, name='G_de')
I_ge = mm.decoder(vec_con, self.input_height, self.input_height, reuse=True, name='G_de')
self.image_result = I_ge * (1-self.MASK) + self.Y*self.MASK
D_real_red = mm.discriminator_red(self.Y, reuse=False, name='disc_red')
D_fake_red = mm.discriminator_red(self.image_result, reuse=True, name='disc_red')
# ------- Loss
Loss_D_red = tf.reduce_mean(tf.nn.relu(1+D_fake_red)) + tf.reduce_mean(tf.nn.relu(1-D_real_red))
Loss_D = Loss_D_red
Loss_gan_red = -tf.reduce_mean(D_fake_red)
Loss_gan = Loss_gan_red
Loss_s_re = tf.reduce_mean(tf.abs(I_ge - self.Y))
Loss_hat = tf.reduce_mean(tf.abs(I_co - self.Y))
A = tf.image.rgb_to_yuv((self.image_result+1)/2.0)
A_Y = tf.to_int32(A[:, :, :, 0:1]*255.0)
B = tf.image.rgb_to_yuv((self.Y+1)/2.0)
B_Y = tf.to_int32(B[:, :, :, 0:1]*255.0)
ssim = tf.reduce_mean(tf.image.ssim(A_Y, B_Y, 255.0))
alpha = IT/1000000
Loss_G = 0.1*Loss_gan + 10*Loss_s_re + 5*(1-alpha) * Loss_hat
# --------------------- variable & optimizer
var_D = [v for v in tf.global_variables() if v.name.startswith('disc_red')]
var_G = [v for v in tf.global_variables() if v.name.startswith('G_en') or v.name.startswith('G_de') or v.name.startswith('CB1')]
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
optimize_D = tf.train.AdamOptimizer(learning_rate=0.0004, beta1=0.5, beta2=0.9).minimize(Loss_D, var_list=var_D)
optimize_G = tf.train.AdamOptimizer(learning_rate=0.0001, beta1=0.5, beta2=0.9).minimize(Loss_G, var_list=var_G)
config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.4
# config.gpu_options.allow_growth = False
self.sess = tf.Session(config=config)
init = tf.global_variables_initializer()
self.sess.run(init)
saver = tf.train.Saver()
if self.is_mosaic:
Restore = tf.train.import_meta_graph(self.mosaic_model_name)
Restore.restore(self.sess, tf.train.latest_checkpoint(self.mosaic_checkpoint_name))
else:
Restore = tf.train.import_meta_graph(self.bar_model_name)
Restore.restore(self.sess, tf.train.latest_checkpoint(self.bar_checkpoint_name))
def predict(self, censored, unused, mask):
img_sample = self.sess.run(self.image_result, feed_dict={self.X: censored, self.Y: unused, self.MASK: mask})
return img_sample