forked from StartleStars/DeepMindBreak
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
executable file
·305 lines (229 loc) · 12 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
from __future__ import division
from ops import *
import tensorflow.contrib.layers as layers
import math
def conv_nn(input, dims1, dims2, size1, size2, k_size = 3):
pp = tf.pad(input, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
L1 = layers.conv2d(pp, dims1, [k_size, k_size], stride=[1, 1], padding='VALID', activation_fn=None)
L1 = tf.nn.elu(L1)
pp = tf.pad(L1, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
L2 = layers.conv2d(pp, dims2, [k_size, k_size], stride=[1, 1], padding='VALID', activation_fn=None)
L2 = tf.nn.elu(L2)
L2 = tf.image.resize_nearest_neighbor(L2, (size1, size2))
return L2
def encoder(input, reuse, name):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
p = tf.pad(input, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
CL1 = layers.conv2d(p, 32, [5, 5], stride=[1, 1], padding='VALID', activation_fn=None)
CL1 = tf.nn.elu(CL1) # 256 256 32
p = tf.pad(CL1, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
CL2 = layers.conv2d(p, 64, [3, 3], stride=[2, 2], padding='VALID', activation_fn=None)
CL2 = tf.nn.elu(CL2) # 128 128 64
p = tf.pad(CL2, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
CL3 = layers.conv2d(p, 64, [3, 3], stride=[1, 1], padding='VALID', activation_fn=None)
CL3 = tf.nn.elu(CL3) # 128 128 64
p = tf.pad(CL3, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
CL4 = layers.conv2d(p, 128, [3, 3], stride=[2, 2], padding='VALID', activation_fn=None)
CL4 = tf.nn.elu(CL4) # 64 64 128
p = tf.pad(CL4, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
CL5 = layers.conv2d(p, 128, [3, 3], stride=[1, 1], padding='VALID', activation_fn=None)
CL5 = tf.nn.elu(CL5) # 64 64 128
p = tf.pad(CL5, [[0, 0], [1, 1], [1, 1], [0, 0]], "REFLECT")
CL6 = layers.conv2d(p, 256, [3, 3], stride=[2, 2], padding='VALID', activation_fn=None)
CL6 = tf.nn.elu(CL6) # 32 32 128
p = tf.pad(CL6, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
DCL1 = layers.conv2d(p, 256, [3, 3], rate=2, stride=[1, 1], padding='VALID', activation_fn=None)
DCL1 = tf.nn.elu(DCL1)
p = tf.pad(DCL1, [[0, 0], [4, 4], [4, 4], [0, 0]], "REFLECT")
DCL2 = layers.conv2d(p, 256, [3, 3], rate=4, stride=[1, 1], padding='VALID', activation_fn=None)
DCL2 = tf.nn.elu(DCL2)
p = tf.pad(DCL2, [[0, 0], [8, 8], [8, 8], [0, 0]], "REFLECT")
DCL3 = layers.conv2d(p, 256, [3, 3], rate=8, stride=[1, 1], padding='VALID', activation_fn=None)
DCL3 = tf.nn.elu(DCL3)
p = tf.pad(DCL3, [[0, 0], [16, 16], [16, 16], [0, 0]], "REFLECT")
DCL4 = layers.conv2d(p, 256, [3, 3], rate=16, stride=[1, 1], padding='VALID', activation_fn=None)
DCL4 = tf.nn.elu(DCL4) # 32 32 128
return DCL4
def decoder(input, size1, size2, reuse, name):
with tf.variable_scope(name):
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
DL1 = conv_nn(input, 128, 128, int(size1/4), int(size2/4)) # 64 64 128
DL2 = conv_nn(DL1, 64, 64, int(size1/2), int(size2/2)) # 128 128 64
DL3 = conv_nn(DL2, 32, 32, int(size1), int(size2))
DL4 = conv_nn(DL3, 16, 16, int(size1), int(size2))
LL2 = layers.conv2d(DL4, 3, [3, 3], stride=[1, 1], padding='SAME', activation_fn=None) # 256 256 3
LL2 = tf.clip_by_value(LL2, -1.0, 1.0)
return LL2
def discriminator_G(input, reuse, name):
with tf.variable_scope(name):
# image is 256 x 256 x input_c_dim
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
p = tf.pad(input, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L1 = layers.conv2d(p, 64, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L1 = instance_norm(L1, 'di1')
L1 = tf.nn.leaky_relu(L1)
p = tf.pad(L1, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L2 = layers.conv2d(p, 128, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L2 = instance_norm(L2, 'di2')
L2 = tf.nn.leaky_relu(L2)
p = tf.pad(L2, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L3 = layers.conv2d(p, 256, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L3 = instance_norm(L3, 'di3')
L3 = tf.nn.leaky_relu(L3)
p = tf.pad(L3, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L4 = layers.conv2d(p, 256, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L4 = instance_norm(L4, 'di4')
L4 = tf.nn.leaky_relu(L4)
L4 = layers.flatten(L4)
L5 = tf.layers.dense(L4, 1)
return L5
def discriminator_L(input, reuse, name):
with tf.variable_scope(name):
# image is 256 x 256 x input_c_dim
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
p = tf.pad(input, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L1 = layers.conv2d(p, 64, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L1 = instance_norm(L1, 'di1l')
L1 = tf.nn.leaky_relu(L1) # 32 32 64
p = tf.pad(L1, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L2 = layers.conv2d(p, 128, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L2 = instance_norm(L2, 'di2l')
L2 = tf.nn.leaky_relu(L2) # 16 16 128
p = tf.pad(L2, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L3 = layers.conv2d(p, 256, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L3 = instance_norm(L3, 'di3l')
L3 = tf.nn.leaky_relu(L3) # 8 8 256
p = tf.pad(L3, [[0, 0], [2, 2], [2, 2], [0, 0]], "REFLECT")
L4 = layers.conv2d(p, 512, [5, 5], stride=2, padding='VALID', activation_fn=None)
#L4 = instance_norm(L4, 'di4l')
L4 = tf.nn.leaky_relu(L4) # 4 4 512
L4 = layers.flatten(L4)
L5 = tf.layers.dense(L4, 1)
return L5
def discriminator_red(input, reuse, name):
with tf.variable_scope(name):
# image is 256 x 256 x input_c_dim
if reuse:
tf.get_variable_scope().reuse_variables()
else:
assert tf.get_variable_scope().reuse is False
L1 = convolution_SN(input, 64, 5, 2, 'l1')
# L1 = instance_norm(L1, 'di1')
L1 = tf.nn.leaky_relu(L1)
L2 = convolution_SN(L1, 128, 5, 2, 'l2')
# L2 = instance_norm(L2, 'di2')
L2 = tf.nn.leaky_relu(L2)
L3 = convolution_SN(L2, 256, 5, 2, 'l3')
# L3 = instance_norm(L3, 'di3')
L3 = tf.nn.leaky_relu(L3)
L4 = convolution_SN(L3, 256, 5, 2, 'l4')
# L4 = instance_norm(L4, 'di4')
L4 = tf.nn.leaky_relu(L4)
L5 = convolution_SN(L4, 256, 5, 2, 'l5')
# L5 = instance_norm(L5, 'di5')
L5 = tf.nn.leaky_relu(L5)
L6 = convolution_SN(L5, 512, 5, 2, 'l6')
# L6 = instance_norm(L6, 'di6')
L6 = tf.nn.leaky_relu(L6)
L7 = dense_RED_SN(L6, 'l7')
return L7
def contextual_block(bg_in, fg_in, mask, k_size, lamda, name, stride=1):
with tf.variable_scope(name):
b, h, w, dims = [i.value for i in bg_in.get_shape()]
temp = tf.image.resize_nearest_neighbor(mask, (h, w))
temp = tf.expand_dims(temp[:, :, :, 0], 3) # b 128 128 1
mask_r = tf.tile(temp, [1, 1, 1, dims]) # b 128 128 128
bg = bg_in * mask_r
kn = int((k_size - 1) / 2)
c = 0
for p in range(kn, h - kn, stride):
for q in range(kn, w - kn, stride):
c += 1
patch1 = tf.extract_image_patches(bg, [1, k_size, k_size, 1], [1, stride, stride, 1], [1, 1, 1, 1], 'VALID')
patch1 = tf.reshape(patch1, (b, 1, c, k_size*k_size*dims))
patch1 = tf.reshape(patch1, (b, 1, 1, c, k_size * k_size * dims))
patch1 = tf.transpose(patch1, [0, 1, 2, 4, 3])
patch2 = tf.extract_image_patches(fg_in, [1,k_size,k_size,1], [1,1,1,1], [1,1,1,1], 'SAME')
ACL = []
for ib in range(b):
k1 = patch1[ib, :, :, :, :]
k1d = tf.reduce_sum(tf.square(k1), axis=2)
k2 = tf.reshape(k1, (k_size, k_size, dims, c))
ww = patch2[ib, :, :, :]
wwd = tf.reduce_sum(tf.square(ww), axis=2, keepdims=True)
ft = tf.expand_dims(ww, 0)
CS = tf.nn.conv2d(ft, k1, strides=[1, 1, 1, 1], padding='SAME')
tt = k1d + wwd
DS1 = tf.expand_dims(tt, 0) - 2 * CS
DS2 = (DS1 - tf.reduce_mean(DS1, 3, True)) / reduce_std(DS1, 3, True)
DS2 = -1 * tf.nn.tanh(DS2)
CA = softmax(lamda * DS2)
ACLt = tf.nn.conv2d_transpose(CA, k2, output_shape=[1, h, w, dims], strides=[1, 1, 1, 1], padding='SAME')
ACLt = ACLt / (k_size ** 2)
if ib == 0:
ACL = ACLt
else:
ACL = tf.concat((ACL, ACLt), 0)
ACL = bg + ACL * (1.0 - mask_r)
con1 = tf.concat([bg_in, ACL], 3)
ACL2 = layers.conv2d(con1, dims, [1, 1], stride=[1, 1], padding='VALID', activation_fn=None, scope='ML')
ACL2 = tf.nn.elu(ACL2)
return ACL2
def contextual_block_cs(bg_in, fg_in, mask, k_size, lamda, name, stride=1):
with tf.variable_scope(name):
b, h, w, dims = [i.value for i in bg_in.get_shape()]
temp = tf.image.resize_nearest_neighbor(mask, (h, w))
temp = tf.expand_dims(temp[:, :, :, 0], 3) # b 128 128 1
mask_r = tf.tile(temp, [1, 1, 1, dims]) # b 128 128 128
bg = bg_in * mask_r
kn = int((k_size - 1) / 2)
c = 0
for p in range(kn, h - kn, stride):
for q in range(kn, w - kn, stride):
c += 1
patch1 = tf.extract_image_patches(bg, [1, k_size, k_size, 1], [1, stride, stride, 1], [1, 1, 1, 1], 'VALID')
patch1 = tf.reshape(patch1, (b, 1, c, k_size*k_size*dims))
patch1 = tf.reshape(patch1, (b, 1, 1, c, k_size * k_size * dims))
patch1 = tf.transpose(patch1, [0, 1, 2, 4, 3])
patch2 = tf.extract_image_patches(fg_in, [1,k_size,k_size,1], [1,1,1,1], [1,1,1,1], 'SAME')
ACL = []
fuse_weight = tf.reshape(tf.eye(3), [3, 3, 1, 1])
for ib in range(b):
k1 = patch1[ib, :, :, :, :]
k2 = k1 / tf.sqrt(tf.reduce_sum(tf.square(k1), axis=2, keepdims=True) + 1e-16)
k1 = tf.reshape(k1, (k_size, k_size, dims, c))
ww = patch2[ib, :, :, :]
ft = ww / tf.sqrt(tf.reduce_sum(tf.square(ww), axis=2, keepdims=True) + 1e-16)
ft = tf.expand_dims(ft, 0)
CA = tf.nn.conv2d(ft, k2, strides=[1, 1, 1, 1], padding='SAME')
CA = tf.reshape(CA, [1, h * w, c, 1])
CA = tf.nn.conv2d(CA, fuse_weight, strides=[1, 1, 1, 1], padding='SAME')
CA = tf.reshape(CA, [1, h, w, int(math.sqrt(c)), int(math.sqrt(c))])
CA = tf.transpose(CA, [0, 2, 1, 4, 3])
CA = tf.reshape(CA, [1, h * w, c, 1])
CA = tf.nn.conv2d(CA, fuse_weight, strides=[1, 1, 1, 1], padding='SAME')
CA = tf.reshape(CA, [1, h, w, int(math.sqrt(c)), int(math.sqrt(c))])
CA = tf.transpose(CA, [0, 2, 1, 4, 3])
CA = tf.reshape(CA, [1, h, w, c])
CA2 = softmax(lamda * CA)
ACLt = tf.nn.conv2d_transpose(CA2, k1, output_shape=[1, h, w, dims], strides=[1, 1, 1, 1], padding='SAME')
ACLt = ACLt / (k_size ** 2)
if ib == 0:
ACL = ACLt
else:
ACL = tf.concat((ACL, ACLt), 0)
ACL2 = bg + ACL * (1.0 - mask_r)
return ACL2