-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexLinear.lua
398 lines (340 loc) · 12.6 KB
/
IndexLinear.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
local ffi = require 'ffi'
local IndexLinear, parent = torch.class('nn.IndexLinear', 'nn.Module')
function IndexLinear:__init(inputSize, outputSize, doGradInput, keysOffset, weight, bias, normalize)
parent.__init(self)
-- We need for 3 extra parameters per feature
-- if we normalize:
-- * The max-abs value
-- * The inverse of the max-abs value
-- * The per-feature bias
-- We keep an extra placeholder for further per learning rate feature manipulation.
-- So it's 4 total.
self.normalize = normalize and 4 or 0
-- This is important to keep the possibility of sharing a weight
-- directly, without having to allocate it first.
-- The reason is these weights can be very large.
self.weight = weight or torch.Tensor(inputSize, outputSize + self.normalize):zero()
self.bias = bias or torch.Tensor(outputSize):zero()
self.inputSize = self.weight and self.weight:size(1) or inputSize
self.outputSize = self.weight and (self.weight:size(2)-self.normalize) or outputSize
-- gradWeight is not initialized as we're doing dense gradient accumulation
-- This is more efficient and avoids allocating a giant useless gradWeight
self.gradWeight = torch.Tensor()
-- gradBias still works the same as it's already dense
self.gradBias = torch.Tensor(self.outputSize):zero()
-- Buffers
self.gradWeightBuffer = torch.Tensor()
self.valuesBuffer = torch.Tensor()
self.normalizedValues = torch.Tensor()
-- That is used to accumulate keys and gradWeight
-- when doing gradients accumulations
self.running = {
cumSumSizes = {},
keys = {},
gradWeight = {},
counter = 1,
}
-- self.sizes, self.cumSumSizes are calculated on the CPU even when using CUDA.
-- These two tables make it easier to resize these buffers instead of re-allocating them.
-- self.*Cache[1] always contains values on CPU.
-- If CUDA is being used, self.*Cache[2] contains values on GPU.
self.sizesCache = {}
self.cumSumSizesCache = {}
-- A few options
self.weightDecay = 0
self.doGradInput = doGradInput or false
self.offset = keysOffset and keysOffset-1 or -1 -- if this adds self.offset to indices
end
-- Reset all the parameters needed
-- for normalization to 0
function IndexLinear:reset(stdv)
if stdv then
stdv = stdv * math.sqrt(3)
else
stdv = 1./math.sqrt(self.weight:size(2))
end
self.weight:uniform(-stdv, stdv)
self.bias:uniform(-stdv, stdv):mul(0.000001)
if self.normalize and self.normalize > 0 then
self.weight[{{}, {1,self.normalize}}]:zero()
end
end
function IndexLinear:reshapeInput(input)
assert(torch.type(input) == 'table')
local ninputs = 0
for _, v in ipairs(input) do
ninputs = ninputs + 1
end
assert(ninputs == 2 or ninputs == 3)
-- If format is:
-- {
-- torch.LongTensor(size1+size2+...+sizeN), -- concatenated batch of keys
-- torch.Tensor(size1+size2+...+sizeN), -- concatenated batch of values
-- torch.LongTensor(N), -- keys/values sizes (values are {size1, ..., sizeN})
-- }
if ninputs == 3 then
local fkeys = input[1]
local fvals = input[2]
local fsizes = torch.isTensor(input[3]) and input[3] or fkeys.new{input[3]}
assert(fkeys:nElement() == fvals:nElement(), 'Keys and values should be of same size')
assert(fkeys:dim() == 1, 'Keys and values should be 1D')
self.isFlat = true
self.noBatch = false
return fkeys, fvals, fsizes
end
local keys = input[1]
local values = input[2]
local lkeys, lvalues
-- If format is:
-- {
-- { torch.LongTensor(size1), torch.LongTensor(size2), ..., torch.LongTensor(sizeN) }, -- batch of keys
-- { torch.Tensor(size1), torch.Tensor(size2), ..., torch.Tensor(sizeN) }, -- batch of values,
-- }
if torch.type(keys) == 'table' and torch.type(values) == 'table' then
lkeys, lvalues = keys, values
self.isFlat = false
self.noBatch = false
-- If format is not a batch:
-- {
-- torch.LongTensor(size1), -- keys
-- torch.Tensor(size1), -- values,
-- }
elseif torch.isTensor(keys) and torch.isTensor(values) then
lkeys, lvalues = {keys}, {values}
self.isFlat = false
self.noBatch = true
else
error('Wrong input format.')
end
for i=1,#lkeys do
assert(lvalues[i]:dim() == 1 and lkeys[i]:dim() == 1, "keys and values should be 1D")
end
return lkeys, lvalues
end
function IndexLinear:longTensor(...)
if (self:type() == 'torch.CudaTensor') then
return torch.CudaLongTensor(...)
else
return torch.LongTensor(...)
end
end
function IndexLinear:flattenInputs(input)
local lkeys, lvalues, sizes = self:reshapeInput(input)
local counter = self.running.counter
-- Ensure everything is of the right type
local isCuda = (self:type() == 'torch.CudaTensor')
self.running.keys[counter] = self.running.keys[counter] or self:longTensor()
self.keys = self.running.keys[counter]
if self.isFlat then
self.values = self.values or lvalues.new()
self.sizes = self.sizes or self:longTensor()
self.keys:resize(lkeys:size()):copy(lkeys)
self.values:resize(lvalues:size()):copy(lvalues)
self.sizes = sizes
self.cumSumSizes = self.cumSumSizes or self.sizes.new()
self.cumSumSizes:cumsum(self.sizes)
else
self.values = self.values or lvalues[1].new()
self.lkeys = lkeys
self.lvalues = lvalues
local batchSize = #self.lkeys
self.sizesCache[1] = self.sizesCache[1] or torch.LongTensor(batchSize)
self.cumSumSizesCache[1] = self.cumSumSizesCache[1] or torch.LongTensor(batchSize)
self.sizes = self.sizesCache[1]
self.cumSumSizes = self.cumSumSizesCache[1]
self.sizes:resize(batchSize)
self.cumSumSizes:resize(batchSize)
for i = 1,batchSize do
self.sizes[i] = self.lkeys[i]:size(1)
end
self.cumSumSizes:cumsum(self.sizes)
self.keys:cat(self.lkeys, 1)
self.values:cat(self.lvalues, 1)
if isCuda then
-- Get the GPU cache
self.sizesCache[2] = self.sizesCache[2] or torch.CudaLongTensor()
self.cumSumSizesCache[2] = self.cumSumSizesCache[2] or torch.CudaLongTensor()
self.sizes = self.sizesCache[2]
self.cumSumSizes = self.cumSumSizesCache[2]
-- Resize and copy to GPU
self.sizes:resize(batchSize):copy(self.sizesCache[1])
self.cumSumSizes:resize(batchSize):copy(self.cumSumSizesCache[1])
end
end
self.running.cumSumSizes[counter] = self.cumSumSizes
end
function IndexLinear:updateOutput(input)
self:flattenInputs(input)
self.values.THNN.IndexLinear_updateOutput(
self.keys:cdata(),
self.offset,
self.values:cdata(),
self.sizes:cdata(),
self.cumSumSizes:cdata(),
self.output:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.normalizedValues:cdata(),
self.train and 1 or 0
)
if self.noBatch then
self.output:resize(self.output:size(2))
end
return self.output
end
function IndexLinear:accUpdateGradParameters(input, gradOutput, scale)
self.values.THNN.IndexLinear_accUpdateGradParameters(
self.keys:cdata(),
self.offset,
self.normalize > 0 and self.normalizedValues:cdata() or self.values:cdata(),
self.sizes:cdata(),
self.cumSumSizes:cdata(),
gradOutput:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.weightDecay or 0,
scale or 1
)
end
function IndexLinear:accGradParameters(input, gradOutput, scale)
local counter = self.running.counter
-- Same as the running.keys in the updateOutput function,
-- get a table of dense running.gradWeight
self.running.gradWeight[counter] = self.running.gradWeight[counter] or self.values.new()
self.values.THNN.IndexLinear_accGradParameters(
self.keys:cdata(),
self.offset,
self.normalize > 0 and self.normalizedValues:cdata() or self.values:cdata(),
self.sizes:cdata(),
self.cumSumSizes:cdata(),
gradOutput:cdata(),
self.running.gradWeight[counter]:cdata(),
self.gradBias:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.valuesBuffer:cdata(),
self.weightDecay or 0,
scale or 1
)
-- Increment the running counter to create a new buffer
-- if we don't flush them in zerogradParamters
self.running.counter = self.running.counter + 1
end
function IndexLinear:updateGradInput(input, gradOutput)
self.gradInput = {}
-- Revamped from nn.SparseLinear.updateGradInput
if self.doGradInput and self.normalize > 0 then
error('updateGradInput is not implemented in max-normalize mode')
end
local ini = self.weight:size(1)
if self.doGradInput then
local gi = gradOutput.new()
if gradOutput:dim() == 1 then
gi:resize(self.weight:size(1))
gi:mv(self.weight,gradOutput)
gi:resize(1, self.weight:size(1))
elseif gradOutput:dim() == 2 then
gi:resize(gradOutput:size(1), self.weight:size(1))
gi:mm(gradOutput, self.weight:t())
end
local indices = self.running.keys[1].new(ini):range(1, ini)
if self.isFlat then
self.gradInput[1] = torch.repeatTensor(indices, gi:size(1), 1)
self.gradInput[2] = gi
else
self.gradInput[1] = {}
self.gradInput[2] = {}
for i = 1,gi:size(1) do
self.gradInput[1][i] = self.running.keys[1].new(ini)
self.gradInput[1][i]:copy(indices)
self.gradInput[2][i] = gradOutput.new(ini)
self.gradInput[2][i]:copy(gi[i])
end
end
end
if self.noBatch then
if self.isFlat then
self.gradInput = {self.gradInput[1]:resize(ini), self.gradInput[2]:resize(ini)}
else
self.gradInput = {self.gradInput[1][1], self.gradInput[2][1]}
end
end
return self.gradInput
end
function IndexLinear:updateParameters(lr)
local counter = self.running.counter
if counter > 1 then
if counter == 2 then
self.updateKeys = self.running.keys[1]
self.gradWeight = self.running.gradWeight[1]
else
self.updateKeysBuffer = self.updateKeysBuffer or self:longTensor()
local lkeys = {}
local lgweights = {}
local totalSize = 0
local lCumSumSizes = {}
for i=1,counter-1 do
lkeys[i] = self.running.keys[i]
-- Change layout to take advantage of the 1-D contiguous torch.cat
lgweights[i] = self.running.gradWeight[i]:contiguous()
lgweights[i]:resize(lgweights[i]:nElement())
lCumSumSizes[i] = totalSize + self.running.cumSumSizes[i]
totalSize = totalSize + lkeys[i]:size(1)
end
self.updateKeysBuffer:cat(lkeys, 1)
self.gradWeightBuffer:cat(lgweights, 1)
self.cumSumSizes:cat(lCumSumSizes, 1)
self.gradWeightBuffer:resize(totalSize, self.outputSize)
self.gradWeight = self.gradWeightBuffer
self.updateKeys = self.updateKeysBuffer
end
self.values.THNN.IndexLinear_updateParameters(
self.gradWeight:cdata(),
self.gradBias:cdata(),
self.weight:cdata(),
self.bias:cdata(),
self.updateKeys:cdata(),
self.cumSumSizes:cdata(),
self.offset,
self.weightDecay or 0,
lr or error('You must specify a learning rate')
)
end
end
function IndexLinear:zeroGradParameters()
-- No need to do anything here as gradWeight is dense
self.gradBias:zero()
-- The below piece of code would reset
-- the smart scaling parameters for each features
-- each time we call zeroGradParameters
-- TODO: decide what to do with that piece of code.
-- NB: this should be commented along with the corresponding
-- piece of code in lib/THNN/generic/IndexLinear.c, in the accUpdateGradParameters function.
--[[
local w = self.weight:select(2, 3)
if self.updateKeys and self.updateKeys:nElement() > 0 then
self.updateKeysBuffer:resizeAs(self.updateKeys):copy(self.updateKeys):add(self.offset+1)
w:indexFill(1, self.updateKeysBuffer, 0)
end
]]--
self.running.counter = 1
end
function IndexLinear:parameters()
return {self.weight, self.bias}, {self.running, self.gradBias}
end
function IndexLinear:clearState()
self.running.keys = {}
self.running.gradWeight = {}
self.keys = nil
self.zerokeys = nil
self.updateKeys = nil
self.values = nil
self.sizes = nil
self.lkeys = {}
self.lvalues = {}
self.gradWeightBuffer = self.gradWeightBuffer.new()
self.valuesBuffer = self.valuesBuffer.new()
self.updateKeysBuffer = nil
self.values = nil
return parent.clearState(self)
end