-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
92 lines (48 loc) · 1.16 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# coding: utf-8
# In[1]:
# Load Model
# In[11]:
import pickle
import numpy as np
# In[3]:
model_path = "finalized_model.sav"
scaler_path = "scaler_param.sav"
# In[13]:
loaded_model = pickle.load(open(model_path,'rb'))
loaded_scaler = pickle.load(open(scaler_path,'rb'))
# In[28]:
# Xc,Yc,Radius
test = np.array([[5,5,70]])
test = loaded_scaler.transform(test)
predict = loaded_model.predict(test)
predict = predict.flatten()
# In[30]:
points = []
for i in range(0,len(predict)-1,2):
points.append((predict[i],predict[i+1]))
points
# In[31]:
import matplotlib.pyplot as plt
# In[38]:
# for point in points:
# plt.plot(*point,'g.')
# plt.show()
# In[41]:
# Lets test the actual Bresenhams agorithm
import test
Xc = 5
Yc = 5
Radius = 70
# test.plotCircle(Xc,Yc,Radius)
# In[42]:
def prediction_draw(Xc,Yc,R):
test = np.array([[5,5,70]])
test = loaded_scaler.transform(test)
predict = loaded_model.predict(test)
predict = predict.flatten()
points = []
for i in range(0,len(predict)-1,2):
points.append((predict[i],predict[i+1]))
for point in points:
plt.plot(*point,'g.')
plt.show()