-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathmain.py
775 lines (672 loc) · 30.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
# We implemented our method on top of AB3DMOT's KITTI tracking open-source code
from __future__ import print_function
import os.path, copy, numpy as np, time, sys
from numba import jit
from sklearn.utils.linear_assignment_ import linear_assignment
from filterpy.kalman import KalmanFilter
from utils import load_list_from_folder, fileparts, mkdir_if_missing
from scipy.spatial import ConvexHull
from covariance import Covariance
import json
from nuscenes import NuScenes
from nuscenes.eval.common.data_classes import EvalBoxes
from nuscenes.eval.tracking.data_classes import TrackingBox
from nuscenes.eval.detection.data_classes import DetectionBox
from pyquaternion import Quaternion
from tqdm import tqdm
@jit
def poly_area(x,y):
return 0.5*np.abs(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1)))
@jit
def box3d_vol(corners):
''' corners: (8,3) no assumption on axis direction '''
a = np.sqrt(np.sum((corners[0,:] - corners[1,:])**2))
b = np.sqrt(np.sum((corners[1,:] - corners[2,:])**2))
c = np.sqrt(np.sum((corners[0,:] - corners[4,:])**2))
return a*b*c
@jit
def convex_hull_intersection(p1, p2):
""" Compute area of two convex hull's intersection area.
p1,p2 are a list of (x,y) tuples of hull vertices.
return a list of (x,y) for the intersection and its volume
"""
inter_p = polygon_clip(p1,p2)
if inter_p is not None:
hull_inter = ConvexHull(inter_p)
return inter_p, hull_inter.volume
else:
return None, 0.0
def polygon_clip(subjectPolygon, clipPolygon):
""" Clip a polygon with another polygon.
Args:
subjectPolygon: a list of (x,y) 2d points, any polygon.
clipPolygon: a list of (x,y) 2d points, has to be *convex*
Note:
**points have to be counter-clockwise ordered**
Return:
a list of (x,y) vertex point for the intersection polygon.
"""
def inside(p):
return(cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0])
def computeIntersection():
dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ]
dp = [ s[0] - e[0], s[1] - e[1] ]
n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0]
n2 = s[0] * e[1] - s[1] * e[0]
n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0])
return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3]
outputList = subjectPolygon
cp1 = clipPolygon[-1]
for clipVertex in clipPolygon:
cp2 = clipVertex
inputList = outputList
outputList = []
s = inputList[-1]
for subjectVertex in inputList:
e = subjectVertex
if inside(e):
if not inside(s):
outputList.append(computeIntersection())
outputList.append(e)
elif inside(s):
outputList.append(computeIntersection())
s = e
cp1 = cp2
if len(outputList) == 0:
return None
return(outputList)
def iou3d(corners1, corners2):
''' Compute 3D bounding box IoU.
Input:
corners1: numpy array (8,3), assume up direction is negative Y
corners2: numpy array (8,3), assume up direction is negative Y
Output:
iou: 3D bounding box IoU
iou_2d: bird's eye view 2D bounding box IoU
'''
# corner points are in counter clockwise order
rect1 = [(corners1[i,0], corners1[i,2]) for i in range(3,-1,-1)]
rect2 = [(corners2[i,0], corners2[i,2]) for i in range(3,-1,-1)]
area1 = poly_area(np.array(rect1)[:,0], np.array(rect1)[:,1])
area2 = poly_area(np.array(rect2)[:,0], np.array(rect2)[:,1])
inter, inter_area = convex_hull_intersection(rect1, rect2)
iou_2d = inter_area/(area1+area2-inter_area)
ymax = min(corners1[0,1], corners2[0,1])
ymin = max(corners1[4,1], corners2[4,1])
inter_vol = inter_area * max(0.0, ymax-ymin)
vol1 = box3d_vol(corners1)
vol2 = box3d_vol(corners2)
iou = inter_vol / (vol1 + vol2 - inter_vol)
return iou, iou_2d
@jit
def roty(t):
''' Rotation about the y-axis. '''
c = np.cos(t)
s = np.sin(t)
return np.array([[c, 0, s],
[0, 1, 0],
[-s, 0, c]])
@jit
def rotz(t):
''' Rotation about the z-axis. '''
c = np.cos(t)
s = np.sin(t)
return np.array([[c, -s, 0],
[s, c, 0],
[0, 0, 1]])
def convert_3dbox_to_8corner(bbox3d_input, nuscenes_to_kitti=False):
''' Takes an object and a projection matrix (P) and projects the 3d
bounding box into the image plane.
Returns:
corners_2d: (8,2) array in left image coord.
corners_3d: (8,3) array in in rect camera coord.
Note: the output of this function will be passed to the funciton iou3d
for calculating the 3D-IOU. But the function iou3d was written for
kitti, so the caller needs to set nuscenes_to_kitti to True if
the input bbox3d_input is in nuscenes format.
'''
# compute rotational matrix around yaw axis
bbox3d = copy.copy(bbox3d_input)
if nuscenes_to_kitti:
# transform to kitti format first
bbox3d_nuscenes = copy.copy(bbox3d)
# kitti: [x, y, z, a, l, w, h]
# nuscenes: [y, -z, -x, -a, w, l, h]
bbox3d[0] = bbox3d_nuscenes[1]
bbox3d[1] = -bbox3d_nuscenes[2]
bbox3d[2] = -bbox3d_nuscenes[0]
bbox3d[3] = -bbox3d_nuscenes[3]
bbox3d[4] = bbox3d_nuscenes[5]
bbox3d[5] = bbox3d_nuscenes[4]
R = roty(bbox3d[3])
# 3d bounding box dimensions
l = bbox3d[4]
w = bbox3d[5]
h = bbox3d[6]
# 3d bounding box corners
x_corners = [l/2,l/2,-l/2,-l/2,l/2,l/2,-l/2,-l/2];
y_corners = [0,0,0,0,-h,-h,-h,-h];
z_corners = [w/2,-w/2,-w/2,w/2,w/2,-w/2,-w/2,w/2];
# rotate and translate 3d bounding box
corners_3d = np.dot(R, np.vstack([x_corners,y_corners,z_corners]))
corners_3d[0,:] = corners_3d[0,:] + bbox3d[0]
corners_3d[1,:] = corners_3d[1,:] + bbox3d[1]
corners_3d[2,:] = corners_3d[2,:] + bbox3d[2]
return np.transpose(corners_3d)
class KalmanBoxTracker(object):
"""
This class represents the internel state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self, bbox3D, info, covariance_id=0, track_score=None, tracking_name='car', use_angular_velocity=False):
"""
Initialises a tracker using initial bounding box.
"""
#define constant velocity model
if not use_angular_velocity:
self.kf = KalmanFilter(dim_x=10, dim_z=7)
self.kf.F = np.array([[1,0,0,0,0,0,0,1,0,0], # state transition matrix
[0,1,0,0,0,0,0,0,1,0],
[0,0,1,0,0,0,0,0,0,1],
[0,0,0,1,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,0,1,0],
[0,0,0,0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0,0,0,0], # measurement function,
[0,1,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0]])
else:
# with angular velocity
self.kf = KalmanFilter(dim_x=11, dim_z=7)
self.kf.F = np.array([[1,0,0,0,0,0,0,1,0,0,0], # state transition matrix
[0,1,0,0,0,0,0,0,1,0,0],
[0,0,1,0,0,0,0,0,0,1,0],
[0,0,0,1,0,0,0,0,0,0,1],
[0,0,0,0,1,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0],
[0,0,0,0,0,0,0,1,0,0,0],
[0,0,0,0,0,0,0,0,1,0,0],
[0,0,0,0,0,0,0,0,0,1,0],
[0,0,0,0,0,0,0,0,0,0,1]])
self.kf.H = np.array([[1,0,0,0,0,0,0,0,0,0,0], # measurement function,
[0,1,0,0,0,0,0,0,0,0,0],
[0,0,1,0,0,0,0,0,0,0,0],
[0,0,0,1,0,0,0,0,0,0,0],
[0,0,0,0,1,0,0,0,0,0,0],
[0,0,0,0,0,1,0,0,0,0,0],
[0,0,0,0,0,0,1,0,0,0,0]])
# Initialize the covariance matrix, see covariance.py for more details
if covariance_id == 0: # exactly the same as AB3DMOT baseline
# self.kf.R[0:,0:] *= 10. # measurement uncertainty
self.kf.P[7:,7:] *= 1000. #state uncertainty, give high uncertainty to the unobservable initial velocities, covariance matrix
self.kf.P *= 10.
# self.kf.Q[-1,-1] *= 0.01 # process uncertainty
self.kf.Q[7:,7:] *= 0.01
elif covariance_id == 1: # for kitti car, not supported
covariance = Covariance(covariance_id)
self.kf.P = covariance.P
self.kf.Q = covariance.Q
self.kf.R = covariance.R
elif covariance_id == 2: # for nuscenes
covariance = Covariance(covariance_id)
self.kf.P = covariance.P[tracking_name]
self.kf.Q = covariance.Q[tracking_name]
self.kf.R = covariance.R[tracking_name]
if not use_angular_velocity:
self.kf.P = self.kf.P[:-1,:-1]
self.kf.Q = self.kf.Q[:-1,:-1]
else:
assert(False)
self.kf.x[:7] = bbox3D.reshape((7, 1))
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 1 # number of total hits including the first detection
self.hit_streak = 1 # number of continuing hit considering the first detection
self.first_continuing_hit = 1
self.still_first = True
self.age = 0
self.info = info # other info
self.track_score = track_score
self.tracking_name = tracking_name
self.use_angular_velocity = use_angular_velocity
def update(self, bbox3D, info):
"""
Updates the state vector with observed bbox.
"""
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1 # number of continuing hit
if self.still_first:
self.first_continuing_hit += 1 # number of continuing hit in the fist time
######################### orientation correction
if self.kf.x[3] >= np.pi: self.kf.x[3] -= np.pi * 2 # make the theta still in the range
if self.kf.x[3] < -np.pi: self.kf.x[3] += np.pi * 2
new_theta = bbox3D[3]
if new_theta >= np.pi: new_theta -= np.pi * 2 # make the theta still in the range
if new_theta < -np.pi: new_theta += np.pi * 2
bbox3D[3] = new_theta
predicted_theta = self.kf.x[3]
if abs(new_theta - predicted_theta) > np.pi / 2.0 and abs(new_theta - predicted_theta) < np.pi * 3 / 2.0: # if the angle of two theta is not acute angle
self.kf.x[3] += np.pi
if self.kf.x[3] > np.pi: self.kf.x[3] -= np.pi * 2 # make the theta still in the range
if self.kf.x[3] < -np.pi: self.kf.x[3] += np.pi * 2
# now the angle is acute: < 90 or > 270, convert the case of > 270 to < 90
if abs(new_theta - self.kf.x[3]) >= np.pi * 3 / 2.0:
if new_theta > 0: self.kf.x[3] += np.pi * 2
else: self.kf.x[3] -= np.pi * 2
#########################
self.kf.update(bbox3D)
if self.kf.x[3] >= np.pi: self.kf.x[3] -= np.pi * 2 # make the theta still in the range
if self.kf.x[3] < -np.pi: self.kf.x[3] += np.pi * 2
self.info = info
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
self.kf.predict()
if self.kf.x[3] >= np.pi: self.kf.x[3] -= np.pi * 2
if self.kf.x[3] < -np.pi: self.kf.x[3] += np.pi * 2
self.age += 1
if(self.time_since_update>0):
self.hit_streak = 0
self.still_first = False
self.time_since_update += 1
self.history.append(self.kf.x)
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return self.kf.x[:7].reshape((7, ))
def angle_in_range(angle):
'''
Input angle: -2pi ~ 2pi
Output angle: -pi ~ pi
'''
if angle > np.pi:
angle -= 2 * np.pi
if angle < -np.pi:
angle += 2 * np.pi
return angle
def diff_orientation_correction(det, trk):
'''
return the angle diff = det - trk
if angle diff > 90 or < -90, rotate trk and update the angle diff
'''
diff = det - trk
diff = angle_in_range(diff)
if diff > np.pi / 2:
diff -= np.pi
if diff < -np.pi / 2:
diff += np.pi
diff = angle_in_range(diff)
return diff
def greedy_match(distance_matrix):
'''
Find the one-to-one matching using greedy allgorithm choosing small distance
distance_matrix: (num_detections, num_tracks)
'''
matched_indices = []
num_detections, num_tracks = distance_matrix.shape
distance_1d = distance_matrix.reshape(-1)
index_1d = np.argsort(distance_1d)
index_2d = np.stack([index_1d // num_tracks, index_1d % num_tracks], axis=1)
detection_id_matches_to_tracking_id = [-1] * num_detections
tracking_id_matches_to_detection_id = [-1] * num_tracks
for sort_i in range(index_2d.shape[0]):
detection_id = int(index_2d[sort_i][0])
tracking_id = int(index_2d[sort_i][1])
if tracking_id_matches_to_detection_id[tracking_id] == -1 and detection_id_matches_to_tracking_id[detection_id] == -1:
tracking_id_matches_to_detection_id[tracking_id] = detection_id
detection_id_matches_to_tracking_id[detection_id] = tracking_id
matched_indices.append([detection_id, tracking_id])
matched_indices = np.array(matched_indices)
return matched_indices
def associate_detections_to_trackers(detections,trackers,iou_threshold=0.1,
use_mahalanobis=False, dets=None, trks=None, trks_S=None, mahalanobis_threshold=0.1, print_debug=False, match_algorithm='greedy'):
"""
Assigns detections to tracked object (both represented as bounding boxes)
detections: N x 8 x 3
trackers: M x 8 x 3
dets: N x 7
trks: M x 7
trks_S: N x 7 x 7
Returns 3 lists of matches, unmatched_detections and unmatched_trackers
"""
if(len(trackers)==0):
return np.empty((0,2),dtype=int), np.arange(len(detections)), np.empty((0,8,3),dtype=int)
iou_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
distance_matrix = np.zeros((len(detections),len(trackers)),dtype=np.float32)
if use_mahalanobis:
assert(dets is not None)
assert(trks is not None)
assert(trks_S is not None)
if use_mahalanobis and print_debug:
print('dets.shape: ', dets.shape)
print('dets: ', dets)
print('trks.shape: ', trks.shape)
print('trks: ', trks)
print('trks_S.shape: ', trks_S.shape)
print('trks_S: ', trks_S)
S_inv = [np.linalg.inv(S_tmp) for S_tmp in trks_S] # 7 x 7
S_inv_diag = [S_inv_tmp.diagonal() for S_inv_tmp in S_inv]# 7
print('S_inv_diag: ', S_inv_diag)
for d,det in enumerate(detections):
for t,trk in enumerate(trackers):
if use_mahalanobis:
S_inv = np.linalg.inv(trks_S[t]) # 7 x 7
diff = np.expand_dims(dets[d] - trks[t], axis=1) # 7 x 1
# manual reversed angle by 180 when diff > 90 or < -90 degree
corrected_angle_diff = diff_orientation_correction(dets[d][3], trks[t][3])
diff[3] = corrected_angle_diff
distance_matrix[d, t] = np.sqrt(np.matmul(np.matmul(diff.T, S_inv), diff)[0][0])
else:
iou_matrix[d,t] = iou3d(det,trk)[0] # det: 8 x 3, trk: 8 x 3
distance_matrix = -iou_matrix
if match_algorithm == 'greedy':
matched_indices = greedy_match(distance_matrix)
elif match_algorithm == 'pre_threshold':
if use_mahalanobis:
to_max_mask = distance_matrix > mahalanobis_threshold
distance_matrix[to_max_mask] = mahalanobis_threshold + 1
else:
to_max_mask = iou_matrix < iou_threshold
distance_matrix[to_max_mask] = 0
iou_matrix[to_max_mask] = 0
matched_indices = linear_assignment(distance_matrix) # houngarian algorithm
else:
matched_indices = linear_assignment(distance_matrix) # houngarian algorithm
if print_debug:
print('distance_matrix.shape: ', distance_matrix.shape)
print('distance_matrix: ', distance_matrix)
print('matched_indices: ', matched_indices)
unmatched_detections = []
for d,det in enumerate(detections):
if(d not in matched_indices[:,0]):
unmatched_detections.append(d)
unmatched_trackers = []
for t,trk in enumerate(trackers):
if len(matched_indices) == 0 or (t not in matched_indices[:,1]):
unmatched_trackers.append(t)
#filter out matched with low IOU
matches = []
for m in matched_indices:
match = True
if use_mahalanobis:
if distance_matrix[m[0],m[1]] > mahalanobis_threshold:
match = False
else:
if(iou_matrix[m[0],m[1]]<iou_threshold):
match = False
if not match:
unmatched_detections.append(m[0])
unmatched_trackers.append(m[1])
else:
matches.append(m.reshape(1,2))
if(len(matches)==0):
matches = np.empty((0,2),dtype=int)
else:
matches = np.concatenate(matches,axis=0)
if print_debug:
print('matches: ', matches)
print('unmatched_detections: ', unmatched_detections)
print('unmatched_trackers: ', unmatched_trackers)
return matches, np.array(unmatched_detections), np.array(unmatched_trackers)
class AB3DMOT(object):
def __init__(self,covariance_id=0, max_age=2,min_hits=3, tracking_name='car', use_angular_velocity=False, tracking_nuscenes=False):
"""
observation:
before reorder: [h, w, l, x, y, z, rot_y]
after reorder: [x, y, z, rot_y, l, w, h]
state:
[x, y, z, rot_y, l, w, h, x_dot, y_dot, z_dot]
"""
self.max_age = max_age
self.min_hits = min_hits
self.trackers = []
self.frame_count = 0
self.reorder = [3, 4, 5, 6, 2, 1, 0]
self.reorder_back = [6, 5, 4, 0, 1, 2, 3]
self.covariance_id = covariance_id
self.tracking_name = tracking_name
self.use_angular_velocity = use_angular_velocity
self.tracking_nuscenes = tracking_nuscenes
def update(self,dets_all, match_distance, match_threshold, match_algorithm, seq_name):
"""
Params:
dets_all: dict
dets - a numpy array of detections in the format [[x,y,z,theta,l,w,h],[x,y,z,theta,l,w,h],...]
info: a array of other info for each det
Requires: this method must be called once for each frame even with empty detections.
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
dets, info = dets_all['dets'], dets_all['info'] # dets: N x 7, float numpy array
#print('dets.shape: ', dets.shape)
#print('info.shape: ', info.shape)
dets = dets[:, self.reorder]
self.frame_count += 1
print_debug = False
if False and seq_name == '2f56eb47c64f43df8902d9f88aa8a019' and self.frame_count >= 25 and self.frame_count <= 30:
print_debug = True
print('self.frame_count: ', self.frame_count)
if print_debug:
for trk_tmp in self.trackers:
print('trk_tmp.id: ', trk_tmp.id)
trks = np.zeros((len(self.trackers),7)) # N x 7 , #get predicted locations from existing trackers.
to_del = []
ret = []
for t,trk in enumerate(trks):
pos = self.trackers[t].predict().reshape((-1, 1))
trk[:] = [pos[0], pos[1], pos[2], pos[3], pos[4], pos[5], pos[6]]
if(np.any(np.isnan(pos))):
to_del.append(t)
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
for t in reversed(to_del):
self.trackers.pop(t)
if print_debug:
for trk_tmp in self.trackers:
print('trk_tmp.id: ', trk_tmp.id)
dets_8corner = [convert_3dbox_to_8corner(det_tmp, match_distance == 'iou' and self.tracking_nuscenes) for det_tmp in dets]
if len(dets_8corner) > 0: dets_8corner = np.stack(dets_8corner, axis=0)
else: dets_8corner = []
trks_8corner = [convert_3dbox_to_8corner(trk_tmp, match_distance == 'iou' and self.tracking_nuscenes) for trk_tmp in trks]
trks_S = [np.matmul(np.matmul(tracker.kf.H, tracker.kf.P), tracker.kf.H.T) + tracker.kf.R for tracker in self.trackers]
if len(trks_8corner) > 0:
trks_8corner = np.stack(trks_8corner, axis=0)
trks_S = np.stack(trks_S, axis=0)
if match_distance == 'iou':
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets_8corner, trks_8corner, iou_threshold=match_threshold, print_debug=print_debug, match_algorithm=match_algorithm)
else:
matched, unmatched_dets, unmatched_trks = associate_detections_to_trackers(dets_8corner, trks_8corner, use_mahalanobis=True, dets=dets, trks=trks, trks_S=trks_S, mahalanobis_threshold=match_threshold, print_debug=print_debug, match_algorithm=match_algorithm)
#update matched trackers with assigned detections
for t,trk in enumerate(self.trackers):
if t not in unmatched_trks:
d = matched[np.where(matched[:,1]==t)[0],0] # a list of index
trk.update(dets[d,:][0], info[d, :][0])
detection_score = info[d, :][0][-1]
trk.track_score = detection_score
#create and initialise new trackers for unmatched detections
for i in unmatched_dets: # a scalar of index
detection_score = info[i][-1]
track_score = detection_score
trk = KalmanBoxTracker(dets[i,:], info[i, :], self.covariance_id, track_score, self.tracking_name, use_angular_velocity)
self.trackers.append(trk)
i = len(self.trackers)
for trk in reversed(self.trackers):
d = trk.get_state() # bbox location
d = d[self.reorder_back]
if((trk.time_since_update < self.max_age) and (trk.hits >= self.min_hits or self.frame_count <= self.min_hits)):
ret.append(np.concatenate((d, [trk.id+1], trk.info[:-1], [trk.track_score])).reshape(1,-1)) # +1 as MOT benchmark requires positive
i -= 1
#remove dead tracklet
if(trk.time_since_update >= self.max_age):
self.trackers.pop(i)
if(len(ret)>0):
return np.concatenate(ret) # x, y, z, theta, l, w, h, ID, other info, confidence
return np.empty((0,15 + 7))
NUSCENES_TRACKING_NAMES = [
'bicycle',
'bus',
'car',
'motorcycle',
'pedestrian',
'trailer',
'truck'
]
def format_sample_result(sample_token, tracking_name, tracker):
'''
Input:
tracker: (9): [h, w, l, x, y, z, rot_y], tracking_id, tracking_score
Output:
sample_result {
"sample_token": <str> -- Foreign key. Identifies the sample/keyframe for which objects are detected.
"translation": <float> [3] -- Estimated bounding box location in meters in the global frame: center_x, center_y, center_z.
"size": <float> [3] -- Estimated bounding box size in meters: width, length, height.
"rotation": <float> [4] -- Estimated bounding box orientation as quaternion in the global frame: w, x, y, z.
"velocity": <float> [2] -- Estimated bounding box velocity in m/s in the global frame: vx, vy.
"tracking_id": <str> -- Unique object id that is used to identify an object track across samples.
"tracking_name": <str> -- The predicted class for this sample_result, e.g. car, pedestrian.
Note that the tracking_name cannot change throughout a track.
"tracking_score": <float> -- Object prediction score between 0 and 1 for the class identified by tracking_name.
We average over frame level scores to compute the track level score.
The score is used to determine positive and negative tracks via thresholding.
}
'''
rotation = Quaternion(axis=[0, 0, 1], angle=tracker[6]).elements
sample_result = {
'sample_token': sample_token,
'translation': [tracker[3], tracker[4], tracker[5]],
'size': [tracker[1], tracker[2], tracker[0]],
'rotation': [rotation[0], rotation[1], rotation[2], rotation[3]],
'velocity': [0, 0],
'tracking_id': str(int(tracker[7])),
'tracking_name': tracking_name,
'tracking_score': tracker[8]
}
return sample_result
def track_nuscenes(data_split, covariance_id, match_distance, match_threshold, match_algorithm, save_root, use_angular_velocity):
'''
submission {
"meta": {
"use_camera": <bool> -- Whether this submission uses camera data as an input.
"use_lidar": <bool> -- Whether this submission uses lidar data as an input.
"use_radar": <bool> -- Whether this submission uses radar data as an input.
"use_map": <bool> -- Whether this submission uses map data as an input.
"use_external": <bool> -- Whether this submission uses external data as an input.
},
"results": {
sample_token <str>: List[sample_result] -- Maps each sample_token to a list of sample_results.
}
}
'''
save_dir = os.path.join(save_root, data_split); mkdir_if_missing(save_dir)
if 'train' in data_split:
detection_file = '/juno/u/hkchiu/dataset/nuscenes_new/megvii_train.json'
data_root = '/juno/u/hkchiu/dataset/nuscenes/trainval'
version='v1.0-trainval'
output_path = os.path.join(save_dir, 'results_train_probabilistic_tracking.json')
elif 'val' in data_split:
detection_file = '/juno/u/hkchiu/dataset/nuscenes_new/megvii_val.json'
data_root = '/juno/u/hkchiu/dataset/nuscenes/trainval'
version='v1.0-trainval'
output_path = os.path.join(save_dir, 'results_val_probabilistic_tracking.json')
elif 'test' in data_split:
detection_file = '/juno/u/hkchiu/dataset/nuscenes_new/megvii_test.json'
data_root = '/juno/u/hkchiu/dataset/nuscenes/test'
version='v1.0-test'
output_path = os.path.join(save_dir, 'results_test_probabilistic_tracking.json')
nusc = NuScenes(version=version, dataroot=data_root, verbose=True)
results = {}
total_time = 0.0
total_frames = 0
with open(detection_file) as f:
data = json.load(f)
assert 'results' in data, 'Error: No field `results` in result file. Please note that the result format changed.' \
'See https://www.nuscenes.org/object-detection for more information.'
all_results = EvalBoxes.deserialize(data['results'], DetectionBox)
meta = data['meta']
print('meta: ', meta)
print("Loaded results from {}. Found detections for {} samples."
.format(detection_file, len(all_results.sample_tokens)))
processed_scene_tokens = set()
for sample_token_idx in tqdm(range(len(all_results.sample_tokens))):
sample_token = all_results.sample_tokens[sample_token_idx]
scene_token = nusc.get('sample', sample_token)['scene_token']
if scene_token in processed_scene_tokens:
continue
first_sample_token = nusc.get('scene', scene_token)['first_sample_token']
current_sample_token = first_sample_token
mot_trackers = {tracking_name: AB3DMOT(covariance_id, tracking_name=tracking_name, use_angular_velocity=use_angular_velocity, tracking_nuscenes=True) for tracking_name in NUSCENES_TRACKING_NAMES}
while current_sample_token != '':
results[current_sample_token] = []
dets = {tracking_name: [] for tracking_name in NUSCENES_TRACKING_NAMES}
info = {tracking_name: [] for tracking_name in NUSCENES_TRACKING_NAMES}
for box in all_results.boxes[current_sample_token]:
if box.detection_name not in NUSCENES_TRACKING_NAMES:
continue
q = Quaternion(box.rotation)
angle = q.angle if q.axis[2] > 0 else -q.angle
#print('box.rotation, angle, axis: ', box.rotation, q.angle, q.axis)
#print('box.rotation, angle, axis: ', q.angle, q.axis)
#[h, w, l, x, y, z, rot_y]
detection = np.array([
box.size[2], box.size[0], box.size[1],
box.translation[0], box.translation[1], box.translation[2],
angle])
#print('detection: ', detection)
information = np.array([box.detection_score])
dets[box.detection_name].append(detection)
info[box.detection_name].append(information)
dets_all = {tracking_name: {'dets': np.array(dets[tracking_name]), 'info': np.array(info[tracking_name])}
for tracking_name in NUSCENES_TRACKING_NAMES}
total_frames += 1
start_time = time.time()
for tracking_name in NUSCENES_TRACKING_NAMES:
if dets_all[tracking_name]['dets'].shape[0] > 0:
trackers = mot_trackers[tracking_name].update(dets_all[tracking_name], match_distance, match_threshold, match_algorithm, scene_token)
# (N, 9)
# (h, w, l, x, y, z, rot_y), tracking_id, tracking_score
# print('trackers: ', trackers)
for i in range(trackers.shape[0]):
sample_result = format_sample_result(current_sample_token, tracking_name, trackers[i])
results[current_sample_token].append(sample_result)
cycle_time = time.time() - start_time
total_time += cycle_time
# get next frame and continue the while loop
current_sample_token = nusc.get('sample', current_sample_token)['next']
# left while loop and mark this scene as processed
processed_scene_tokens.add(scene_token)
# finished tracking all scenes, write output data
output_data = {'meta': meta, 'results': results}
with open(output_path, 'w') as outfile:
json.dump(output_data, outfile)
print("Total Tracking took: %.3f for %d frames or %.1f FPS"%(total_time,total_frames,total_frames/total_time))
if __name__ == '__main__':
if len(sys.argv)!=9:
print("Usage: python main.py data_split(train, val, test) covariance_id(0, 1, 2) match_distance(iou or m) match_threshold match_algorithm(greedy or h) use_angular_velocity(true or false) dataset save_root")
sys.exit(1)
data_split = sys.argv[1]
covariance_id = int(sys.argv[2])
match_distance = sys.argv[3]
match_threshold = float(sys.argv[4])
match_algorithm = sys.argv[5]
use_angular_velocity = sys.argv[6] == 'True' or sys.argv[6] == 'true'
dataset = sys.argv[7]
save_root = os.path.join('./' + sys.argv[8])
if dataset == 'kitti':
print('track kitti not supported')
elif dataset == 'nuscenes':
print('track nuscenes')
track_nuscenes(data_split, covariance_id, match_distance, match_threshold, match_algorithm, save_root, use_angular_velocity)