-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluation.py
82 lines (68 loc) · 3.3 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import os
import torch
import argparse
import numpy as np
from PIL import Image
from diffusers.utils.torch_utils import randn_tensor
from analogist import Analogist
def load_prompt(prompt_file, prompt_index=0, a_prompt=None):
with open(prompt_file, "r") as f:
prompts = f.readlines()
prompts = [p.strip().split('\t')[1:][prompt_index] for p in prompts]
if a_prompt is not None:
prompts = [p + ', ' + a_prompt for p in prompts]
return prompts
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Analogist')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--input_dir', type=str, default='datasets/low_level_tasks_processed/colorization_masked')
parser.add_argument('--prompt_file', type=str, default="datasets/low_level_tasks_processed/colorization_gpt4_out.txt")
parser.add_argument('--output_dir', type=str, default="results/dev")
parser.add_argument('--num_samples', type=int, default=-1)
parser.add_argument('--res', type=int, default=512)
parser.add_argument('--num_images_per_prompt', type=int, default=8)
parser.add_argument('--strength', type=float, default=0.98)
parser.add_argument('--guidance_scale', type=float, default=15)
parser.add_argument('--sac_start_layer', type=int, default=3)
parser.add_argument('--sac_end_layer', type=int, default=11)
parser.add_argument('--cam_start_layer', type=int, default=3)
parser.add_argument('--cam_end_layer', type=int, default=11)
parser.add_argument('--scale_sac', type=float, default=1.3)
args = parser.parse_args()
analogist = Analogist(args)
input_dir = args.input_dir
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
# Prepare mask image
height, width = args.res, args.res
mask_image = analogist.mask_image.resize((width, height))
# Prepare the dataset
fns = sorted(os.listdir(input_dir))
prompts = load_prompt(args.prompt_file, prompt_index=0,
a_prompt="best quality, extremely detailed")
assert len(fns) == len(prompts)
num_samples = args.num_samples
if num_samples == -1:
num_samples = len(prompts)
# Run Analogist
for fn, gpt4_prompt in zip(fns[:num_samples], prompts[:num_samples]):
# Load image I
in_fn = os.path.join(input_dir, fn)
image = Image.open(in_fn)
# Prepare paseted image I'
B = image.crop((0,height//2,width//2,height))
image_pasted = Image.open(in_fn)
image_pasted.paste(B, (width//2,height//2))
# Prepare noise
shape = (args.num_images_per_prompt, 4, height//8, width//8)
latents = randn_tensor(shape, generator=analogist.generator, dtype=torch.float16, device=analogist.device)
# Run the model
output = analogist.inpaint(gpt4_prompt, image_pasted, latents, height, width)
# Save the output
out_image = [np.array(image), np.array(image_pasted)] \
+ [np.array(img.crop((width//2,height//2,width,height)).resize((width,height))) for img in output]
out_image = np.concatenate(out_image, axis=1)
out_image = Image.fromarray(out_image)
out_path = os.path.join(output_dir, fn)
out_image.save(out_path)
print("Syntheiszed images are saved in", out_path)