-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathconstruct.cpp
529 lines (445 loc) · 22.6 KB
/
construct.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
//
// construct.cpp
//
//
// Created by Deniz Kural and Erik Garrison on 2/19/13.
//
//
#include "construct.h"
#include "convert.h"
#include "gssw.h"
using namespace std;
//using namespace vcf;
int constructDAG(gssw_graph* graph,
ReferenceMappings& ref_map,
string &targetSequence,
string& sequenceName,
vector<vcf::Variant> &variants,
long offset,
int8_t* nt_table,
int8_t* score_matrix) {
/*
cerr << "constructing DAG over "
<< targetSequence.size()
<< " and " << variants.size()
<< " variants with offset " << offset << endl;
cerr << "target:\t" << targetSequence << endl;
*/
//graph = gssw_graph_create(1);
long prev_pos = offset;
string p5_ref_seq;
vector<gssw_node*> p5_var_nodes; // previous p5 nodes
//vector<gssw_node*> ref_backbone;
long int id = 0;
// in construction, we assume nodes are already in DAG form
// really, this may be a problem; imagine overlapping variants
// so can the construction algorithm be adjusted to allow this
// to do so we should maintain the reference backbone and build new nodes off of this
for(vector<vcf::Variant>::iterator it = variants.begin(); it != variants.end(); ++it) {
vcf::Variant& var = *it;
vector<gssw_node*> var_nodes;
// two possibilities assuming complete positional normalization and no overlapping variants (TODO implement check!)
// 1) we have a bubble
// - make a reference node from here to the last position, link it to the last alleles
// - make a node for each of the ref and alt alleles in this variant
// - link the last ref node to the new nodes representing the alleles at this variant,
// - and remember the ref and alts of this variant for next time around, so they can be linked downstream
// 2) we have successive variants
// - don't bother making a reference node--- it's embedded in the last variant record
// - make a node for each of the ref and alt alleles in this variant
// - link them the ref and alt alleles in the last variant
// - remember the ref and alts from this variant for the next time around
int current_pos = (long int) var.position - 1;
//cerr << var << endl;
// Construct Right-Node
p5_ref_seq = targetSequence.substr(prev_pos - offset, current_pos - prev_pos);
Cigar* p5_ref_cigar = NULL;
gssw_node* p5_ref_node = NULL;
if (!p5_ref_seq.empty()) {
//cigars.push_back(Cigar(convert(p5_ref_seq.size()) + "M"));
//refpositions.push_back(prev_pos + offset);
//p5_ref_cigar = &cigars.back();
p5_ref_node = (gssw_node*)gssw_node_create((void*)NULL, graph->size, p5_ref_seq.c_str(), nt_table, score_matrix);
gssw_graph_add_node(graph, p5_ref_node);
ref_map.add_node(p5_ref_node, prev_pos, Cigar(convert(p5_ref_seq.size()) + "M"));
//cerr << "connect to old p5 nodes" << endl;
for (vector<gssw_node*>::iterator n = p5_var_nodes.begin(); n != p5_var_nodes.end(); ++n) {
gssw_nodes_add_edge(*n, p5_ref_node);
}
p5_var_nodes.clear();
}
// new previous position is at the start of the variant
prev_pos = current_pos + var.ref.size();
// construct the ref node of variant
//cigars.push_back(Cigar(convert(var.ref.size()) + "M"));
//refpositions.push_back(current_pos + offset);
//cerr << "cpo ref pos .back() " << refpositions.back() << endl;
//Cigar* ref_cigar = &cigars.back();
gssw_node* ref_node = (gssw_node*)gssw_node_create((void*)NULL, graph->size, var.ref.c_str(), nt_table, score_matrix);
gssw_graph_add_node(graph, ref_node);
ref_map.add_node(ref_node, current_pos, Cigar(convert(var.ref.size()) + "M"));
// store the current ref in the pp3 nodes for connection on next iteration
var_nodes.push_back(ref_node);
// if we have variants in succession, we need to attach the p5 nodes
// to the current ref and alt nodes
if (!p5_ref_node) {
// transfer connections across to this ref
for (vector<gssw_node*>::iterator n = p5_var_nodes.begin(); n != p5_var_nodes.end(); ++n) {
gssw_nodes_add_edge(*n, ref_node);
}
} else {
// otherwise we naturally connect ref to ref
gssw_nodes_add_edge(p5_ref_node, ref_node);
}
// Fill and connect Allele Nodes to p3_ref_node
// get the cigars for the alt alleles
map<string, vector<vcf::VariantAllele> > vavs = var.parsedAlternates();
for (vector<string>::iterator a = var.alt.begin(); a != var.alt.end(); ++a) {
// create node for this alt, first establishing its ref-relative cigar
//cigars.push_back(Cigar(vavs[*a]));
//refpositions.push_back(current_pos + offset);
//Cigar* cigar = &cigars.back();
gssw_node* alt_node = (gssw_node*)gssw_node_create((void*)NULL, graph->size, a->c_str(), nt_table, score_matrix);
// save in graph
gssw_graph_add_node(graph, alt_node);
ref_map.add_node(alt_node, current_pos, Cigar(vavs[*a]));
// retain for connection to ref p3_ref_node of next variant
var_nodes.push_back(alt_node);
if (!p5_ref_node) {
// carry across previous alternates and ref, if we are at successive variants
for (vector<gssw_node*>::iterator n = p5_var_nodes.begin(); n != p5_var_nodes.end(); ++n) {
gssw_nodes_add_edge(*n, alt_node);
}
} else {
gssw_nodes_add_edge(p5_ref_node, alt_node);
}
}
p5_var_nodes.clear();
p5_var_nodes.insert(p5_var_nodes.begin(), var_nodes.begin(), var_nodes.end());
}
int current_pos = targetSequence.size() + offset;//(long int) var.position - (long int) offset;
p5_ref_seq = targetSequence.substr(prev_pos - offset, current_pos - prev_pos);
//cerr << "getting " << prev_pos << " - " << offset << " for " << current_pos << " - " << prev_pos << " bp" << endl;
Cigar* p5_ref_cigar = NULL;
gssw_node* p5_ref_node = NULL;
if (!p5_ref_seq.empty()) {
//cigars.push_back(Cigar(convert(p5_ref_seq.size()) + "M"));
//refpositions.push_back(prev_pos + offset);
//p5_ref_cigar = &cigars.back();
p5_ref_node = (gssw_node*)gssw_node_create((void*)NULL, graph->size, p5_ref_seq.c_str(), nt_table, score_matrix);
gssw_graph_add_node(graph, p5_ref_node);
ref_map.add_node(p5_ref_node, prev_pos, Cigar(convert(p5_ref_seq.size()) + "M"));
//ref_backbone.push_back(p5_ref_node);
//cerr << "connect to old p5 nodes" << endl;
for (vector<gssw_node*>::iterator n = p5_var_nodes.begin(); n != p5_var_nodes.end(); ++n) {
gssw_nodes_add_edge(*n, p5_ref_node);
}
p5_var_nodes.clear();
}
}
pair<gssw_node*, gssw_node*>
divide_ref_path(map<long, gssw_node*>& ref_path,
ReferenceMappings& ref_map,
map<long, set<gssw_node*> >& nodes,
long pos,
int8_t* nt_table,
int8_t* score_matrix,
int& id) {
map<long, gssw_node*>::iterator ref = ref_path.upper_bound(pos);
--ref; // we should now be pointing to the target ref node
long ref_node_pos = ref->first;
gssw_node* old_node = ref->second;
//cerr << "old_node " << old_node << endl;
//cerr << "dividing ref path at " << pos << endl;
// nothing to do
if (ref_node_pos == pos) {
//cerr << "returning current node--- already split right" << endl;
gssw_node* right_ref_node = ref->second;
if (ref != ref_path.begin()) {
--ref;
} else {
cerr << "could not divide reference path at " << pos << " as this is the beginning of the DAG" << endl;
exit(1);
}
gssw_node* left_ref_node = ref->second;
return make_pair(left_ref_node, right_ref_node);
} else {
// divide the ref node at our alt starting position
int diff = pos - ref_node_pos;
// make our left node
string left_ref_node_seq = string(ref->second->seq);//, diff);
left_ref_node_seq = left_ref_node_seq.substr(0, diff);
gssw_node* left_ref_node = (gssw_node*)gssw_node_create((void*)NULL, id++, left_ref_node_seq.c_str(), nt_table, score_matrix);
//cerr << "created left_ref_node " << left_ref_node << endl;
// replace node connections
gssw_node** p = old_node->prev;
for (int i = 0; i < old_node->count_prev; ++i, ++p) {
Cigar old_cigar = ref_map.get_edge(*p, old_node).cigar;
//cerr << *p << " replace next " << old_node << " with " << left_ref_node << endl;
ref_map.del_edge(*p, old_node);
ref_map.add_edge(*p, left_ref_node, ref_node_pos, old_cigar);
gssw_node_replace_next(*p, old_node, left_ref_node);
gssw_node_add_prev(left_ref_node, *p);
}
// make our right node
string right_ref_node_seq = string(ref->second->seq);
right_ref_node_seq = right_ref_node_seq.substr(diff);
gssw_node* right_ref_node = (gssw_node*)gssw_node_create((void*)NULL, id++, right_ref_node_seq.c_str(), nt_table, score_matrix);
//cerr << "created right_ref_node " << right_ref_node << endl;
// ahem and connect current to previous
gssw_node** n = old_node->next;
for (int i = 0; i < old_node->count_next; ++i, ++n) {
Cigar old_cigar = ref_map.get_edge(old_node, *n).cigar;
//cerr << *n << " replace prev " << old_node << " with " << right_ref_node << endl;
ref_map.del_edge(old_node, *n);
ref_map.add_edge(right_ref_node, *n, pos + diff, old_cigar);
gssw_node_replace_prev(*n, old_node, right_ref_node);
gssw_node_add_next(right_ref_node, *n);
}
// connect left to right
//cerr << "adding an edge from " << left_ref_node << " to " << right_ref_node << endl;
gssw_nodes_add_edge(left_ref_node, right_ref_node);
ref_map.add_edge(left_ref_node, right_ref_node, pos, Cigar(0, 'M'));
//cerr << "old_node seq " << old_node->seq << endl;
//cerr << "left_ref_node seq " << left_ref_node->seq << endl;
//cerr << "right_ref_node seq " << right_ref_node->seq << endl;
// destroy old node
//cerr << "destroying the old node " << old_node << endl;
gssw_node_destroy(old_node);
nodes[ref_node_pos].erase(old_node);
ref_map.del_node(old_node);
// replace with new ones
// left
if (nodes[ref_node_pos].size() == 0) {
nodes.erase(ref_node_pos);
}
nodes[ref_node_pos].insert(left_ref_node);
//cerr << "inserting left gssw node " << left_ref_node << endl;
ref_path[ref_node_pos] = left_ref_node;
ref_map.add_node(left_ref_node, ref_node_pos, Cigar(left_ref_node_seq.size(), 'M'));
// right
if (nodes[pos].size() == 0) {
nodes.erase(pos);
}
nodes[pos].insert(right_ref_node);
//cerr << "inserting right gssw node " << right_ref_node << endl;
ref_path[pos] = right_ref_node;
ref_map.add_node(right_ref_node, pos, Cigar(right_ref_node_seq.size(), 'M'));
return make_pair(left_ref_node, right_ref_node);
}
}
int constructDAGProgressive(gssw_graph* graph,
ReferenceMappings& ref_map,
string &targetSequence,
string& sequenceName,
vector<vcf::Variant> &variants,
long offset,
int8_t* nt_table,
int8_t* score_matrix,
bool flat_input_vcf) {
// algorithm
// maintain a core reference path upon which we add new variants as they come
// addition procedure is the following
// find reference node overlapping our start position
// if it is already the end of a node, add the new node
// if it is not the end of a node, break it, insert edges from old->new
// go to end position of alt allele (could be the same position)
// if it already has a break, just point to the next node in line
// if it is not broken, break it and point to the next node
// add new node for alt alleles, connect to start and end node in reference path
// store the ref mapping as a property of the edges and nodes (this allows deletion edges and insertion subpaths)
// probably the name "Backbone" should be changed....? confusing
// maybe to "reference mapping" or something?
int id = 0;
map<long, gssw_node*> reference_path;
map<long, set<gssw_node*> > nodes; // for maintaining a reference-sorted graph
//cerr << "target sequence " << targetSequence << endl;
//cerr << "DAG starts at " << offset << endl;
gssw_node* ref_node = (gssw_node*)gssw_node_create((void*)NULL, id++, targetSequence.c_str(), nt_table, score_matrix);
//cerr << "created ref_node " << ref_node << endl;
reference_path[offset] = ref_node;
nodes[offset].insert(ref_node);
ref_map.add_node(ref_node, offset, Cigar(convert(targetSequence.size()) + "M"));
//cerr << "added ref node @ " << offset << " " << ref_node->seq << endl;
//cerr << "there are " << variants.size() << " variants to use" << endl;
for(vector<vcf::Variant>::iterator it = variants.begin(); it != variants.end(); ++it) {
vcf::Variant& var = *it;
//cerr << "at variant: " << var << endl;
int current_pos = (long int) var.position - 1;
// decompose the alt
map<string, vector<vcf::VariantAllele> > alternates = (flat_input_vcf ? var.flatAlternates() : var.parsedAlternates());
for (map<string, vector<vcf::VariantAllele> >::iterator va = alternates.begin(); va !=alternates.end(); ++va) {
vector<vcf::VariantAllele>& alleles = va->second;
for (vector<vcf::VariantAllele>::iterator a = alleles.begin(); a != alleles.end(); ++a) {
vcf::VariantAllele& allele = *a;
// reference alleles are provided naturally by the reference itself
if (allele.ref == allele.alt) {
continue;
}
long allele_start_pos = allele.position - 1; // 0/1 based conversion... thanks vcflib!
long allele_end_pos = allele_start_pos + allele.ref.size();
//cerr << "allele start, end = " << allele_start_pos << " " << allele_end_pos << endl;
gssw_node* left_ref_node = NULL;
gssw_node* middle_ref_node = NULL;
gssw_node* right_ref_node = NULL;
//cerr << "going into divide ref path" << endl;
pair<gssw_node*, gssw_node*> ref_nodes = divide_ref_path(reference_path,
ref_map,
nodes,
allele_start_pos,
nt_table,
score_matrix,
id);
//cerr << "returned from divide ref path " << ref_nodes.first << " and " << ref_nodes.second << endl;
//cerr << "left_ref_node = " << ref_nodes.first->seq << endl;
//cerr << "right_ref_node = " << ref_nodes.second->seq << endl;
left_ref_node = ref_nodes.first;
//cerr << "allele = " << allele << endl;
// if the ref portion of the allele is not empty, then we need to make another cut
if (!allele.ref.empty()) {
ref_nodes = divide_ref_path(reference_path,
ref_map,
nodes,
allele_end_pos,
nt_table,
score_matrix,
id);
//cerr << "returned from divide ref path " << ref_nodes.first << " and " << ref_nodes.second << endl;
//cerr << "left_ref_node = " << ref_nodes.first->seq << endl;
//cerr << "right_ref_node = " << ref_nodes.second->seq << endl;
middle_ref_node = ref_nodes.first;
right_ref_node = ref_nodes.second;
} else {
left_ref_node = ref_nodes.first;
right_ref_node = ref_nodes.second;
}
//cerr << "Creating new alt node and connecting" << endl;
// create a new alt node and connect the pieces from before
if (!allele.alt.empty()) {
//cerr << "alt is not empty " << allele << endl;
gssw_node* alt_node = (gssw_node*)gssw_node_create((void*)NULL, id++, allele.alt.c_str(), nt_table, score_matrix);
// cerr << "created alt_node " << alt_node << endl;
nodes[allele_start_pos].insert(alt_node);
//ref_map.add_node(alt_node, allele_start_pos, );
ref_map.add_node(alt_node, allele_start_pos, Cigar(allele));
//cerr << "adding an edge from " << left_ref_node << " to " << alt_node << endl;
gssw_nodes_add_edge(left_ref_node, alt_node);
ref_map.add_edge(left_ref_node, alt_node, allele_start_pos, Cigar(0, 'M'));
//cerr << "adding an edge from " << alt_node << " to " << right_ref_node << endl;
gssw_nodes_add_edge(alt_node, right_ref_node);
// NB, should check that the allele_start_pos + allele.ref.size() == allele ref end, aka start of next ref
ref_map.add_edge(alt_node, right_ref_node, allele_start_pos + allele.ref.size(), Cigar(0, 'M'));
// the overlapping reference sequence is already connected
} else {// otherwise, we have a deletion
//cerr << "adding an edge from " << left_ref_node << " to " << right_ref_node << endl;
gssw_nodes_add_edge(left_ref_node, right_ref_node);
//cerr << "should be a deletion " << allele.ref.size() << " " << allele << endl;
ref_map.add_edge(left_ref_node, right_ref_node, allele_start_pos, Cigar(allele.ref.size(), 'D'));
}
}
}
//ref_map.print(); // debugging
}
/*
// add "N" reference node to start if we began with a variant
// ensures proper fill in graph alignment
if (nodes.begin()->second.size() > 1) {
cerr << "adding null ref node" << endl;
gssw_node* null_ref_node = (gssw_node*)gssw_node_create((void*)NULL, id++, "N", nt_table, score_matrix);
long p = nodes.begin()->first;
reference_path[p] = null_ref_node;
set<gssw_node*>& nexts = nodes.begin()->second;
nodes[p].insert(null_ref_node);
ref_map.add_node(null_ref_node, p, Cigar("1M"));
ref_map.add_edge(null_ref_node, reference_path[p+1], p+1, Cigar(0, 'M'));
// add connections
for (set<gssw_node*>::iterator n = nexts.begin(); n != nexts.end(); ++n) {
gssw_nodes_add_edge(null_ref_node, *n);
}
}
*/
// topologically sort nodes before inserting into gssw_graph
// this should be done for us due to ordering in nodes[]
list<gssw_node*> sorted_nodes;
topological_sort(nodes, sorted_nodes);
id = 0;
for (list<gssw_node*>::iterator n = sorted_nodes.begin(); n != sorted_nodes.end(); ++n) {
(*n)->id = id++;
gssw_graph_add_node(graph, *n);
}
// reverse the order of the edges so that we traverse the reference path first
ReferenceNodeSorter rns(ref_map);
for (int i = 0; i < graph->size; ++i) {
gssw_node* n = graph->nodes[i];
sort(n->next, n->next + n->count_next, rns);
//reverse(n->next, n->next + n->count_next);
sort(n->prev, n->prev + n->count_prev, rns);
//reverse(n->prev, n->prev + n->count_prev);
}
/*
//set<gssw_node*> added_nodes;
// execute a breadth-first search to generate ordered nodes
int depth = 0;
gssw_node* n = *(nodes.begin()->second.begin());
while (true) {
for (int i = 0; i < n->count_next; ++i) {
}
}
*/
//gssw_graph_print_stderr(graph);
}
/*
Tarjan's topological sort
L <- Empty list that will contain the sorted nodes
while there are unmarked nodes do
select an unmarked node n
visit(n)
function visit(node n)
if n has a temporary mark then stop (not a DAG)
if n is not marked (i.e. has not been visited yet) then
mark n temporarily
for each node m with an edge from n to m do
visit(m)
mark n permanently
add n to head of L
*/
void topological_sort(map<long, set<gssw_node*> >& nodes,
list<gssw_node*>& sorted_nodes) {
set<gssw_node*> unmarked_nodes;
set<gssw_node*> temporary_marks;
for (map<long, set<gssw_node*> >::iterator s = nodes.begin(); s != nodes.end(); ++s) {
set<gssw_node*>& ns = s->second;
for (set<gssw_node*>::iterator n = ns.begin(); n != ns.end(); ++n) {
unmarked_nodes.insert(*n);
}
}
while (!unmarked_nodes.empty()) {
gssw_node* node = *(unmarked_nodes.begin());
visit_node(node,
sorted_nodes,
unmarked_nodes,
temporary_marks);
}
}
void visit_node(gssw_node* node,
list<gssw_node*>& sorted_nodes,
set<gssw_node*>& unmarked_nodes,
set<gssw_node*>& temporary_marks) {
/*
if (temporary_marks.find(node) != temporary_marks.end()) {
cerr << "cannot sort graph because it is not a DAG!" << endl;
exit(1);
}
*/
if (unmarked_nodes.find(node) != unmarked_nodes.end()) {
temporary_marks.insert(node);
for (int i = 0; i < node->count_next; ++i) {
visit_node(node->next[i],
sorted_nodes,
unmarked_nodes,
temporary_marks);
}
unmarked_nodes.erase(node);
sorted_nodes.push_front(node);
}
}