-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathmain_gbn.py
359 lines (302 loc) · 14.8 KB
/
main_gbn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import pdb
import argparse
import os
import time
import logging
from random import uniform
from datetime import datetime
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import models
from torch.autograd import Variable
from data import get_dataset
from preprocess import get_transform
from utils import *
from ast import literal_eval
from torch.nn.utils import clip_grad_norm
from math import ceil
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ConvNet Training')
parser.add_argument('--results_dir', metavar='RESULTS_DIR',
default='./TrainingResults', help='results dir')
parser.add_argument('--save', metavar='SAVE', default='',
help='saved folder')
parser.add_argument('--dataset', metavar='DATASET', default='cifar10',
help='dataset name or folder')
parser.add_argument('--model', '-a', metavar='MODEL', default='resnet',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: alexnet)')
parser.add_argument('--input_size', type=int, default=None,
help='image input size')
parser.add_argument('--model_config', default='',
help='additional architecture configuration')
parser.add_argument('--type', default='torch.cuda.FloatTensor',
help='type of tensor - e.g torch.cuda.HalfTensor')
parser.add_argument('--gpus', default='0',
help='gpus used for training - e.g 0,1,3')
parser.add_argument('-j', '--workers', default=8, type=int, metavar='N',
help='number of data loading workers (default: 8)')
parser.add_argument('--epochs', default=200, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=2048, type=int,
metavar='N', help='mini-batch size (default: 2048)')
parser.add_argument('-mb', '--mini-batch-size', default=128, type=int,
help='mini-mini-batch size (default: 64)')
parser.add_argument('--lr_bb_fix', dest='lr_bb_fix', action='store_true',
help='learning rate fix for big batch lr = lr0*(batch_size/128)**0.5')
parser.add_argument('--no-lr_bb_fix', dest='lr_bb_fix', action='store_false',
help='learning rate fix for big batch lr = lr0*(batch_size/128)**0.5')
parser.set_defaults(lr_bb_fix=True)
parser.add_argument('--regime_bb_fix', dest='regime_bb_fix', action='store_true',
help='regime fix for big batch e = e0*(batch_size/128)')
parser.add_argument('--no-regime_bb_fix', dest='regime_bb_fix', action='store_false',
help='regime fix for big batch e = e0*(batch_size/128)')
parser.set_defaults(regime_bb_fix=False)
parser.add_argument('--optimizer', default='SGD', type=str, metavar='OPT',
help='optimizer function used')
parser.add_argument('--lr', '--learning_rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', type=str, metavar='FILE',
help='evaluate model FILE on validation set')
def main():
torch.manual_seed(123)
global args, best_prec1
best_prec1 = 0
args = parser.parse_args()
if args.regime_bb_fix:
args.epochs *= ceil(args.batch_size / args.mini_batch_size)
if args.evaluate:
args.results_dir = '/tmp'
if args.save is '':
args.save = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
save_path = os.path.join(args.results_dir, args.save)
if not os.path.exists(save_path):
os.makedirs(save_path)
setup_logging(os.path.join(save_path, 'log.txt'))
results_file = os.path.join(save_path, 'results.%s')
results = ResultsLog(results_file % 'csv', results_file % 'html')
logging.info("saving to %s", save_path)
logging.debug("run arguments: %s", args)
if 'cuda' in args.type:
torch.cuda.manual_seed(123)
args.gpus = [int(i) for i in args.gpus.split(',')]
torch.cuda.set_device(args.gpus[0])
cudnn.benchmark = True
else:
args.gpus = None
# create model
logging.info("creating model %s", args.model)
model = models.__dict__[args.model]
model_config = {'input_size': args.input_size, 'dataset': args.dataset}
if args.model_config is not '':
model_config = dict(model_config, **literal_eval(args.model_config))
model = model(**model_config)
logging.info("created model with configuration: %s", model_config)
# optionally resume from a checkpoint
if args.evaluate:
if not os.path.isfile(args.evaluate):
parser.error('invalid checkpoint: {}'.format(args.evaluate))
checkpoint = torch.load(args.evaluate)
model.load_state_dict(checkpoint['state_dict'])
logging.info("loaded checkpoint '%s' (epoch %s)",
args.evaluate, checkpoint['epoch'])
elif args.resume:
checkpoint_file = args.resume
if os.path.isdir(checkpoint_file):
results.load(os.path.join(checkpoint_file, 'results.csv'))
checkpoint_file = os.path.join(
checkpoint_file, 'model_best.pth.tar')
if os.path.isfile(checkpoint_file):
logging.info("loading checkpoint '%s'", args.resume)
checkpoint = torch.load(checkpoint_file)
args.start_epoch = checkpoint['epoch'] + 1
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
logging.info("loaded checkpoint '%s' (epoch %s)",
checkpoint_file, checkpoint['epoch'])
else:
logging.error("no checkpoint found at '%s'", args.resume)
num_parameters = sum([l.nelement() for l in model.parameters()])
logging.info("number of parameters: %d", num_parameters)
# Data loading code
default_transform = {
'train': get_transform(args.dataset,
input_size=args.input_size, augment=True),
'eval': get_transform(args.dataset,
input_size=args.input_size, augment=False)
}
transform = getattr(model, 'input_transform', default_transform)
regime = getattr(model, 'regime', {0: {'optimizer': args.optimizer,
'lr': args.lr,
'momentum': args.momentum,
'weight_decay': args.weight_decay}})
adapted_regime = {}
for e, v in regime.items():
if args.lr_bb_fix and 'lr' in v:
v['lr'] *= (args.batch_size / args.mini_batch_size) ** 0.5
if args.regime_bb_fix:
e *= ceil(args.batch_size / args.mini_batch_size)
adapted_regime[e] = v
regime = adapted_regime
# define loss function (criterion) and optimizer
criterion = getattr(model, 'criterion', nn.CrossEntropyLoss)()
criterion.type(args.type)
model.type(args.type)
val_data = get_dataset(args.dataset, 'val', transform['eval'])
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, 0)
return
train_data = get_dataset(args.dataset, 'train', transform['train'])
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
logging.info('training regime: %s', regime)
print({i: list(w.size())
for (i, w) in enumerate(list(model.parameters()))})
init_weights = [w.data.cpu().clone() for w in list(model.parameters())]
for epoch in range(args.start_epoch, args.epochs):
optimizer = adjust_optimizer(optimizer, epoch, regime)
# train for one epoch
train_result = train(train_loader, model, criterion, epoch, optimizer)
train_loss, train_prec1, train_prec5 = [
train_result[r] for r in ['loss', 'prec1', 'prec5']]
# evaluate on validation set
val_result = validate(val_loader, model, criterion, epoch)
val_loss, val_prec1, val_prec5 = [val_result[r]
for r in ['loss', 'prec1', 'prec5']]
# remember best prec@1 and save checkpoint
is_best = val_prec1 > best_prec1
best_prec1 = max(val_prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'model': args.model,
'config': args.model_config,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'regime': regime
}, is_best, path=save_path)
logging.info('\n Epoch: {0}\t'
'Training Loss {train_loss:.4f} \t'
'Training Prec@1 {train_prec1:.3f} \t'
'Training Prec@5 {train_prec5:.3f} \t'
'Validation Loss {val_loss:.4f} \t'
'Validation Prec@1 {val_prec1:.3f} \t'
'Validation Prec@5 {val_prec5:.3f} \n'
.format(epoch + 1, train_loss=train_loss, val_loss=val_loss,
train_prec1=train_prec1, val_prec1=val_prec1,
train_prec5=train_prec5, val_prec5=val_prec5))
#Enable to measure more layers
idxs = [0]#,2,4,6,7,8,9,10]#[0, 12, 45, 63]
step_dist_epoch = {'step_dist_n%s' % k: (w.data.cpu() - init_weights[k]).norm()
for (k, w) in enumerate(list(model.parameters())) if k in idxs}
results.add(epoch=epoch + 1, train_loss=train_loss, val_loss=val_loss,
train_error1=100 - train_prec1, val_error1=100 - val_prec1,
train_error5=100 - train_prec5, val_error5=100 - val_prec5,
**step_dist_epoch)
results.plot(x='epoch', y=['train_loss', 'val_loss'],
title='Loss', ylabel='loss')
results.plot(x='epoch', y=['train_error1', 'val_error1'],
title='Error@1', ylabel='error %')
results.plot(x='epoch', y=['train_error5', 'val_error5'],
title='Error@5', ylabel='error %')
for k in idxs:
results.plot(x='epoch', y=['step_dist_n%s' % k],
title='step distance per epoch %s' % k,
ylabel='val')
results.save()
def forward(data_loader, model, criterion, epoch=0, training=True, optimizer=None):
if args.gpus and len(args.gpus) > 1:
model = torch.nn.DataParallel(model, args.gpus)
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
for i, (inputs, target) in enumerate(data_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpus is not None:
target = target.cuda(async=True)
input_var = Variable(inputs.type(args.type), volatile=not training)
target_var = Variable(target)
# compute output
if not training:
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target_var.data, topk=(1, 5))
losses.update(loss.data[0], input_var.size(0))
top1.update(prec1[0], input_var.size(0))
top5.update(prec5[0], input_var.size(0))
else:
mini_inputs = input_var.chunk(args.batch_size // args.mini_batch_size)
mini_targets = target_var.chunk(args.batch_size // args.mini_batch_size)
optimizer.zero_grad()
for k, mini_input_var in enumerate(mini_inputs):
mini_target_var = mini_targets[k]
output = model(mini_input_var)
loss = criterion(output, mini_target_var)
prec1, prec5 = accuracy(output.data, mini_target_var.data, topk=(1, 5))
losses.update(loss.data[0], mini_input_var.size(0))
top1.update(prec1[0], mini_input_var.size(0))
top5.update(prec5[0], mini_input_var.size(0))
# compute gradient and do SGD step
loss.backward()
for p in model.parameters():
p.grad.data.div_(len(mini_inputs))
clip_grad_norm(model.parameters(), 5.)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
logging.info('{phase} - Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(data_loader),
phase='TRAINING' if training else 'EVALUATING',
batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
return {'loss': losses.avg,
'prec1': top1.avg,
'prec5': top5.avg}
def train(data_loader, model, criterion, epoch, optimizer):
# switch to train mode
model.train()
return forward(data_loader, model, criterion, epoch,
training=True, optimizer=optimizer)
def validate(data_loader, model, criterion, epoch):
# switch to evaluate mode
model.eval()
return forward(data_loader, model, criterion, epoch,
training=False, optimizer=None)
if __name__ == '__main__':
main()