Skip to content

Latest commit

 

History

History
365 lines (299 loc) · 10.7 KB

CONVENTIONS.md

File metadata and controls

365 lines (299 loc) · 10.7 KB

Organisational Conventions

Definition of done

Definition of done for a feature:

  • has a dedicated Github issue describing problem space
  • an umbrella task closed/updated with follow-ups
  • all code review comments are resolved
  • has been verified manually by at least one reviewer
  • can be used by first & third party plugins
  • there is no contradiction between client and server API
  • works with the subscription features
    • for a logged-in user
    • for anonymous user
    • compatible with Spaces
  • has unit & integration tests for public contracts
  • has functional tests for user scenarios
  • uses standard tooling:
    • code - TypeScript
    • UI - React
    • tests - jest & FTR
  • has documentation for the public contract, provides a usage example

Technical Conventions

Plugin Structure

All Kibana plugins built at Elastic should follow the same structure.

my_plugin/
├── kibana.json
├── public
│   ├── applications
│   │   ├── my_app
│   │   │   └── index.ts
│   │   └── index.ts
│   ├── services
│   │   ├── my_service
│   │   │   └── index.ts
│   │   └── index.ts
│   ├── index.ts
│   └── plugin.ts
└── server
    ├── routes
    │   └── index.ts
    ├── collectors
    │   └── register.ts
    ├── saved_objects
    │   ├── index.ts
    │   └── my_type.ts
    ├── services
    │   ├── my_service
    │   │   └── index.ts
    │   └── index.ts
    ├── index.ts
    └── plugin.ts
  • Manifest file should be defined on top level.
  • Both server and public should have an index.ts and a plugin.ts file:
    • index.ts should only contain:
      • The plugin export
      • The config export (server only, optional)
      • Type exports for your Setup and Start interfaces, and any relevant sub-types
      • Static, pure exports to be consumed by other plugins
    • plugin.ts should only export a single class that implements the Plugin interface (more details below)
  • UI applications should live as modules inside the applications directory.
    • Applications should export a single renderApp function.
    • Applications should be loaded using dynamic async imports (more details below)
    • If there is only a single application, this directory can be called application that exports the renderApp function.
  • Services provided to other plugins as APIs should live inside the services subdirectory.
    • Services should model the plugin lifecycle (more details below).
  • HTTP routes should be contained inside the server/routes directory.
    • More should be fleshed out here...
  • Usage collectors for Telemetry should be defined in a separate server/collectors/ directory.

The PluginInitializer

// my_plugin/public/index.ts

import { PluginInitializer } from '../../src/core/public';
import { MyPlugin, MyPluginSetup, MyPluginStart } from './plugin';

export const plugin: PluginInitializer<MyPluginSetup, MyPluginStart> = () => new MyPlugin();
export {
  MyPluginSetup,
  MyPluginStart
}

The Plugin class

// my_plugin/public/plugin.ts

import { CoreSetup, CoreStart, Plugin } from '../../src/core/public';
import { OtherPluginSetup, OtherPluginStart } from '../other_plugin';
import { ThirdPluginSetup, ThirdPluginStart } from '../third_plugin';

export interface MyPluginSetup {
  registerThing(...);
}

export interface MyPluginStart {
  getThing(): Thing;
}

export interface MyPluginSetupDeps {
  otherPlugin: OtherPluginSetup;
  thirdPlugin?: ThirdPluginSetup;  // Optional dependency
}

export interface MyPluginStartDeps {
  otherPlugin: OtherPluginStart;
  thirdPlugin?: ThirdPluginStart;  // Optional dependency
}

export class MyPlugin implements Plugin<
  // All of these types are optional. If your plugin does not expose anything
  // or depend on other plugins, these can be omitted.
  MyPluginSetup,
  MyPluginStart,
  MyPluginSetupDeps,
  MyPluginStartDeps,
> {

  public setup(core: CoreSetup, plugins: MyPluginSetupDeps) {
    // should return a value that matches `MyPluginSetup`
  }

  public start(core: CoreStart, plugins: MyPluginStartDeps) {
    // should return a value that matches `MyPluginStart`
  }

  public stop() { ... }
}

Difference between setup and start:

  • setup is reserved for "registration" work
  • start is where any "running" logic for your plugin would live. This only applies if you need to start listening for outside events (polling for work, listening on a port, etc.)

The bulk of your plugin logic will most likely live inside handlers registered during setup.

Applications

It's important that UI code is not included in the main bundle for your plugin. Our webpack configuration supports dynamic async imports to split out imports into a separate bundle. Every app's rendering logic and UI code should leverage this pattern.

// my_plugin/public/applications/my_app.ts

import React from 'react';
import ReactDOM from 'react-dom';
import { CoreStart, AppMountParameters } from 'src/core/public';

import { MyAppRoot } from './components/app.ts';

/**
 * This module will be loaded asynchronously to reduce the bundle size of your plugin's main bundle.
 */
export const renderApp = (
  core: CoreStart,
  deps: MyPluginDepsStart,
  { element, history }: AppMountParameters
) => {
  ReactDOM.render(<MyAppRoot core={core} deps={deps} routerHistory={history} />, element);
  return () => ReactDOM.unmountComponentAtNode(element);
};
// my_plugin/public/plugin.ts

import { Plugin } from '../../src/core/public';

export class MyPlugin implements Plugin {
  public setup(core) {
    core.application.register({
      id: 'my-app',
      async mount(params) {
        // Load application bundle
        const { renderApp } = await import('./application/my_app');
        // Get start services
        const [coreStart, depsStart] = core.getStartServices();
        return renderApp(coreStart, depsStart, params);
      }
    });
  }
}

Prefer the pattern shown above, using core.getStartServices(), rather than store local references retrieved from start.

Bad:

export class MyPlugin implements Plugin {
 // Anti pattern
  private coreStart?: CoreStart;
  private depsStart?: DepsStart;

  public setup(core) {
    core.application.register({
      id: 'my-app',
      async mount(params) {
        const { renderApp } = await import('./application/my_app');
        // Anti pattern - use `core.getStartServices()` instead!
        return renderApp(this.coreStart, this.depsStart, params);
      }
    });
  }

  public start(core, deps) {
    // Anti pattern
    this.coreStart = core;
    this.depsStart = deps;
  }
}

The main reason to prefer the provided async accessor, is that it doesn't requires the developer to understand and reason about when that function can be called. Having an API that fails sometimes isn't a good API design, and it makes accurately testing this difficult.

Services

Service structure should mirror the plugin lifecycle to make reasoning about how the service is executed more clear.

// my_plugin/public/services/my_service.ts

export class MyService {
  private readonly strings$ = new BehaviorSubject<string[]>();

  public setup() {
    return {
      registerStrings: (newString: string) =>
        this.strings$.next([...this.strings$.value, newString]);
    }
  }

  public start() {
    this.strings$.complete();

    return {
      strings: this.strings$.value
    };
  }
}

Constructing and interacting with this service becomes very simple from the top-level Plugin class:

// my_plugin/public/plugin.ts

import { MyService } from './services';

export class Plugin {
  private readonly myService = new MyService();

  public setup() {
    return {
      myService: myService.setup();
    }
  }

  public start() {
    return {
      myService: myService.start();
    }
  }
}

Usage Collection

For creating and registering a Usage Collector. Collectors should be defined in a separate directory server/collectors/. You can read more about usage collectors on src/platform/plugins/shared/usage_collection/README.mdx.

// server/collectors/register.ts
import { UsageCollectionSetup } from 'src/platform/plugins/shared/usage_collection/server';
import { CallCluster } from 'src/legacy/core_plugins/elasticsearch';

export function registerMyPluginUsageCollector(usageCollection?: UsageCollectionSetup): void {
  // usageCollection is an optional dependency, so make sure to return if it is not registered.
  if (!usageCollection) {
    return;
  }

  // create usage collector
  const myCollector = usageCollection.makeUsageCollector({
    type: MY_USAGE_TYPE,
    fetch: async (callCluster: CallCluster) => {

    // query ES and get some data
    // summarize the data into a model
    // return the modeled object that includes whatever you want to track

      return {
        my_objects: {
          total: SOME_NUMBER
        }
      };
    },
  });

  // register usage collector
  usageCollection.registerCollector(myCollector);
}

Saved Objects Types

Saved object type definitions should be defined in their own server/saved_objects directory.

The folder should contain a file per type, named after the snake_case name of the type, and an index.ts file exporting all the types.

// src/plugins/my-plugin/server/saved_objects/my_type.ts
import { SavedObjectsType } from 'src/core/server';

export const myType: SavedObjectsType = {
  name: 'my-type',
  hidden: false,
  namespaceType: 'single',
  mappings: {
    properties: {
      someField: {
        type: 'text',
      },
      anotherField: {
        type: 'text',
      },
    },
  },
  migrations: {
    '1.0.0': migrateFirstTypeToV1,
    '2.0.0': migrateFirstTypeToV2,
  },
};
// src/plugins/my-plugin/server/saved_objects/index.ts

export { myType } from './my_type';

Migration example from the legacy format is available in src/core/MIGRATION_EXAMPLES.md#saved-objects-types

Naming conventions

Export start and setup contracts as MyPluginStart and MyPluginSetup. This avoids naming clashes, if everyone exported them simply as Start and Setup.