-
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsodaTest.py
357 lines (303 loc) · 12.7 KB
/
sodaTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import inspect
import functools
import numpy as np
import random
#from stackexchange...
def autoargs(*include,**kwargs):
def _autoargs(func):
attrs,varargs,varkw,defaults=inspect.getargspec(func)
def sieve(attr):
if kwargs and attr in kwargs['exclude']: return False
return not include or attr in include
@functools.wraps(func)
def wrapper(self,*args,**kwargs):
# handle default values
if defaults:
for attr,val in zip(reversed(attrs),reversed(defaults)):
if sieve(attr): setattr(self, attr, val)
# handle positional arguments
positional_attrs=attrs[1:]
for attr,val in zip(positional_attrs,args):
if sieve(attr): setattr(self, attr, val)
# handle varargs
if varargs:
remaining_args=args[len(positional_attrs):]
if sieve(varargs): setattr(self, varargs, remaining_args)
# handle varkw
if kwargs:
for attr,val in list(kwargs.items()):
if sieve(attr): setattr(self,attr,val)
return func(self,*args,**kwargs)
return wrapper
return _autoargs
#Hah: http://www.pydanny.com/cached-property.html
class cached_property(object):
""" A property that is only computed once per instance and then replaces
itself with an ordinary attribute. Deleting the attribute resets the
property.
Source: https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76
"""
def __init__(self, func):
self.__doc__ = getattr(func, '__doc__')
self.func = func
def __get__(self, obj, cls):
if obj is None:
return self
value = obj.__dict__[self.func.__name__] = self.func(obj)
return value
##actual code
DEBUG = True
arrayType = type(np.array([1]))
class ElectionCounts():
@autoargs()
def __init__(self, delg, appr, prefs, order, cantWin = [], oldSmith = None):
"""
delg: A list of n delegation counts
appr: A list of n approval counts
prefs: A list of n preference lists counts
order: delegation order
"""
self.n = len(delg)
if type(self.appr) != arrayType:
self.appr = np.matrix(self.appr)
if DEBUG:
n = self.n
assert(self.appr.size==n)
assert(len(prefs)==n)
for pref in prefs:
assert(len(pref) == n)
for i in range(n):
assert(i in pref)
noDelg = list(range(n))
for i in order:
noDelg.remove(i)
for i in noDelg:
assert(delg[i] == 0)
def __repr__(self):
return f"ElectionCounts({self.delg},{self.appr.tolist()[0]},{self.prefs},{self.order})"
def oneMatrix(self, pref, size=1):
n = self.n
mat = np.tril(np.ones((n,n)),-1) * size
inverse_pref = np.array(pref)
inverse_pref[pref] = range(n)
for i in range(n):
mat[:,i] = mat[inverse_pref,i]
for i in range(n):
mat[i,:] = mat[i,inverse_pref]
return mat
def appMatrix(self, appr = None):
n = self.n
if appr is None:
appr = self.appr
return np.matrix(np.ones((n,1))) * appr
@cached_property
def matrix(self):
mat = self.appMatrix()
for i in self.order:
mat += self.oneMatrix(self.prefs[i], self.delg[i])
return mat
def beaters(self, loser, candidates, minwin = [None], rival = [None], private = False):
"""a generator which, using the matrix m, gives any members of candidates who loser doesn't majority beat.
NOTE: THIS MODIFIES candidates AS A SIDE-EFFECT, AND NOTICES IF IT"S MODIFIED BY OTHERS.
Also modifies `by` as a side effect
"""
m = self.matrix
best = np.argmax(m[loser])
if private:
outer = candidates
candidates = list(candidates) #local copy
while len(candidates):
c = candidates.pop(0)
if private and (c not in outer):
continue
if (m[best,loser] > m[c,loser]) and (m[best,c] > m[loser,c]):
#print("a",c,loser)
if rival[0] is not None:
toWin = max((m[best,loser] - m[c,loser]), (m[best,c] - m[loser,c]))
if rival[0][0] < toWin:
rival[0] = (toWin,best,loser,c)
if private:
outer.remove(c)
yield c
elif m[loser,c] >= m[c,loser]:
#print("b",c,loser)
if minwin[0] and minwin[0][0] > m[loser, c]:
minwin[0] = (m[loser,c],loser,c)
if private:
outer.remove(c)
yield c
def oneWinner(self, m):
start = np.argmax(m[0])
theRest = list(range(self.n))
theRest.remove(start)
#print(theRest)
return self.climbFrom(start, theRest)
def climbFrom(self, start, theRest):
"""Find the first leaf in a depth-first search up through theRest starting from start.
Watch out! Modifies theRest as side effect!"""
for c in self.beaters(start, theRest):
return self.climbFrom(c, theRest)
#Nobody beats start, so just return.
return start
@cached_property
def majSmith(self):
m = self.matrix
winners = [self.oneWinner(m)]
remaining = list(range(self.n))
remaining.remove(winners[0])
minWin = [(1e6,)]
rival = [(0,)]
self.growFrom(winners[0], winners, remaining, minWin, rival)
self.minWin = minWin[0]
self.rival = rival[0]
return winners
def growFrom(self, seed, plant, soil, minwin = [None], rival = [None]):
#print(seed, plant, soil)
"""as a SIDE-EFFECT, recursively fill out the set of winners, starting from seed"""
for w in self.beaters(seed,soil, minwin, rival, private=True):
#print(w,"grows on",seed)
plant.append(w)
self.growFrom(w, plant, soil, minwin, rival)
def delegated(self, amounts, cantWin=None):
delegator = self.order[0]
appr = np.matrix(np.zeros(self.n))
dprefs = self.prefs[delegator]
#print(dprefs)
appr[:,dprefs] = amounts
if DEBUG:
for i in range(self.n-1):
assert appr[0,dprefs[i]] >= appr[0,dprefs[i+1]],"bullshit %i %i %s ... %s" % (appr[0,dprefs[i]],appr[0,dprefs[i+1]],appr,dprefs)
#print(appr)
delg = list(self.delg)
delg[delegator] = 0
result = ElectionCounts(delg,appr + self.appr,self.prefs,self.order[1:],
cantWin or self.cantWin, self.majSmith)
result.matrix = self.matrix - self.oneMatrix(dprefs, self.delg[delegator]) + self.appMatrix(appr)
return result
def winner(self, verbose = 0):
if not len(self.order): #delegation tree leaf
#print(self.matrix)
if verbose > 2:
print("leafed out", self.matrix)
return np.argmax(self.matrix[0])
smith = self.majSmith
if len(smith) <= 1: #Clear winner, not worth finishing
#print(self.matrix)
if verbose > 2:
print("crystal ball", smith[0], self.matrix)
return smith[0]
if self.oldSmith and verbose and len(smith) > len(self.oldSmith):
print("Smith set expanded!")#,self.oldSmith, smith, self.matrix)
if self.cantWin:
badWinners = True
for possibility in smith:
badWinners = badWinners and (possibility in self.cantWin)
if badWinners:
#print("badwinners", smith, self.cantWin)
if verbose > 2:
print("giving up", self.matrix)
return None #This is a shortcut. We don't know that this cand will win, but it will be ignored anyway.
#figure out reasonable bounds for whom to approve, who might win.
idealWinnerIndex = bestHopeIndex = self.n
bestHope = None
worstWinnerIndex = 0
curPrefs = self.prefs[self.order[0]]
for w in smith:
i = curPrefs.index(w)
if i > worstWinnerIndex:
worstWinnerIndex = i
if i < idealWinnerIndex:
idealWinnerIndex = i
idealWinner = curPrefs[idealWinnerIndex]
cantWin = self.cantWin or set()
#print("looping",len(self.order))
for amounts in self.possibleDelegations(worstWinnerIndex, idealWinnerIndex):
#print(".")
#print(self.delegated(np.array([10,10,0,0,0])))
dec = self.delegated(amounts,cantWin)
w = dec.winner(verbose)
if verbose and len(self.order) > 2:
print(w,len(self.order),"amounts",amounts,bestHope, bestHopeIndex,"and",worstWinnerIndex, idealWinnerIndex,"with",np.trace(dec.matrix))
#print(" " * (5 - len(self.order)), "winner?", w, bestHope, curPrefs )
if w == idealWinner:
if verbose > 1.5:
print("love it", w, dec.matrix)
return(w)
if w is None:
#print("nothing for",amounts)
continue
i = curPrefs.index(w)
#if len(self.order) == 3: #print(i)
if i < bestHopeIndex:
if verbose > 2-len(self.order)*1.0/10:
print("updating w,len(self.order),amounts",w,i,len(self.order),amounts,curPrefs,bestHopeIndex)
#print(,amounts)
print()
bestHopeIndex = i
bestHope = w
for l in range(i+1,self.n):
cantWin.add(curPrefs[l])
return bestHope
def possibleDelegations(self, worstWinnerIndex, idealWinnerIndex):
#first, full thresholding
curPrefs = self.prefs[self.order[0]]
size = self.delg[self.order[0]]
delegations = np.zeros(self.n)
for i in range(max(1,idealWinnerIndex + 1)):
delegations[i] = size
dcopy = np.array(delegations)
#print("hi",i,worstWinnerIndex + 1)
for i in range(i,worstWinnerIndex + 1):
delegations[i] = size
yield np.array(delegations)
#print("there")
#print("you")
#Now, try to be clever
if self.minWin:
for i in range(idealWinnerIndex + 1, worstWinnerIndex): #if i==3 and idealWinnerIndex==1 we want [max, max, mid, mid, 0, 0]
delegations = np.array(dcopy)
needed = max(0,
min(size,
self.minWin[0] - (max(self.matrix[:,curPrefs[i]][range(i+1,worstWinnerIndex+1),:])[0,0] - size) + 0.1))
for j in range(idealWinnerIndex + 1, i + 1):
delegations[j] = needed
yield np.array(delegations)
#self.appMatrixcurPrefs[idealWinnerIndex]
def scores(self):
scores = np.zeros(self.n)
for i in range(len(self.delg)):
for j in range(self.n):
scores[self.prefs[i][j]] = scores[self.prefs[i][j]] + self.delg[i] * (self.n-j-1)
for j in range(self.n):
scores[j] = scores[j] + self.appr.tolist()[0][j] * self.n-1
return scores
myEc = ElectionCounts([4,3,2,0],[0,0,0,1],[[0,1,2,3],[1,2,0,3],[2,0,1,3],[3,2,1,0]],[0,1,2,3])
myEc2 = ElectionCounts([5,30,20,0],[35,0,0,1],[[0,1,2,3],[1,2,0,3],[2,1,0,3],[3,2,1,0]],[0,1,2,3])
myEc3 = ElectionCounts([4,3,2,0],[0,0,0,0],[[0,1,2,3],[2,3,0,1],[3,0,1,2],[3,2,1,0]],[0,1,2,3])
def shuffled(n):
l = list(range(n))
random.shuffle(l)
return l
def randomElection(ncand):
return ElectionCounts(
[random.randrange(4, 20, 3) for _ in range(ncand)],
[round(random.random(), 3) * 10 for _ in range(ncand)],
[shuffled(ncand) for _ in range(ncand)],
list(range(ncand)),
)
def monteCarlo(n):
funky = []
for i in range(n):
if i % 50 == 0:
print("tick",i)
re = randomElection(4 + random.randrange(4))
w = re.winner()
if w not in re.majSmith:
print("Unsmith!!!",i)
funky.append(re)
print(re.delg,re.appr)
print(re.prefs)
print(re.matrix)
print(w,re.majSmith)
print("funny, huh?")
return funky