forked from ropensci/rnoaa
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathghcnd.R
205 lines (193 loc) · 7.88 KB
/
ghcnd.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#' Get all GHCND data from a single weather site
#'
#' This function uses ftp to access the Global Historical Climatology Network
#' daily weather data from NOAA's FTP server for a single weather site. It
#' requires the site identification number for that site and will pull the
#' entire weather dataset for the site.
#'
#' @export
#' @param stationid (character) A character string giving the identification of
#' the weather station for which the user would like to pull data. To get a full
#' and current list of stations, the user can use the \code{\link{ghcnd_stations}}
#' function. To identify stations within a certain radius of a location, the
#' user can use the \code{\link{meteo_nearby_stations}} function.
#' @param path (character) a path to a file with a \code{.dly} extension - already
#' downloaded on your computer
#' @param refresh (logical) If \code{TRUE} force re-download of data.
#' Default: \code{FALSE}
#' @param ... In the case of \code{ghcnd} additional curl options to pass
#' through to \code{\link[crul]{HttpClient}}. In the case of \code{ghcnd_read}
#' further options passed on to \code{read.csv}
#'
#' @return A tibble (data.frame) which contains data pulled from NOAA's FTP
#' server for the queried weather site. A README file with more information
#' about the format of this file is available from NOAA
#' (\url{http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt}).
#' This file is formatted so each line of the file gives the daily weather
#' observations for a single weather variable for all days of one month of
#' one year. In addition to measurements, columns are included for certain
#' flags, which add information on observation sources and quality and are
#' further explained in NOAA's README file for the data.
#'
#' @details This function saves the full set of weather data for the queried
#' site locally in the directory specified by the \code{path} argument.
#'
#' You can access the path for the cached file via \code{attr(x, "source")}
#'
#' You can access the last modified time for the cached file via
#' \code{attr(x, "file_modified")}
#'
#' Messages are printed to the console about file path and file last modified time
#' which you can suppress with \code{suppressMessages()}
#'
#' @author Scott Chamberlain \email{myrmecocystus@@gmail.com},
#' Adam Erickson \email{adam.erickson@@ubc.ca}
#'
#' @seealso To generate a weather dataset for a single weather site that has
#' been cleaned to a tidier weather format, the user should use the
#' \code{\link{ghcnd_search}} function, which calls \code{\link{ghcnd}} and then
#' processes the output, or \code{\link{meteo_tidy_ghcnd}}, which wraps the
#' \code{\link{ghcnd_search}} function to output a tidy dataframe. To pull
#' GHCND data from multiple monitors, see \code{\link{meteo_pull_monitors}}.
#' @note See [ghcnd_cache] for managing cached files
#' @examples \dontrun{
#' # Get data
#' ghcnd(stationid = "AGE00147704")
#'
#' stations <- ghcnd_stations()
#' ghcnd(stations$id[40])
#'
#' library("dplyr")
#' ghcnd(stations$id[80300]) %>% select(id, element) %>% slice(1:3)
#'
#' # manipulate data
#' ## using built in fxns
#' dat <- ghcnd(stationid = "AGE00147704")
#' (alldat <- ghcnd_splitvars(dat))
#'
#' ## using dplyr
#' library("dplyr")
#' dat <- ghcnd(stationid = "AGE00147704")
#' filter(dat, element == "PRCP", year == 1909)
#'
#' # refresh the cached file
#' ghcnd(stationid = "AGE00147704", refresh = TRUE)
#'
#' # Read in a .dly file you've already downloaded
#' path <- system.file("examples/AGE00147704.dly", package = "rnoaa")
#' ghcnd_read(path)
#' }
ghcnd <- function(stationid, refresh = FALSE, ...) {
csvpath <- ghcnd_local(stationid)
if (!is_ghcnd(x = csvpath) || refresh) {
res <- ghcnd_GET(stationid, ...)
} else {
cache_mssg(csvpath)
res <- read.csv(csvpath, stringsAsFactors = FALSE,
colClasses = ghcnd_col_classes)
}
fi <- file.info(csvpath)
res <- remove_na_row(res) # remove trailing row of NA's
res <- tibble::as_tibble(res)
attr(res, 'source') <- csvpath
attr(res, 'file_modified') <- fi[['mtime']]
return(res)
}
#' @export
#' @rdname ghcnd
ghcnd_read <- function(path, ...) {
if (!file.exists(path)) stop("file does not exist")
if (!grepl("\\.dly", path)) {
warning(".dly extension not detected; file may not be read correctly")
}
res <- read.csv(path, stringsAsFactors = FALSE,
colClasses = ghcnd_col_classes, ...)
res <- tibble::as_tibble(res)
attr(res, 'source') <- path
return(res)
}
#' Split variables in data returned from \code{ghcnd}
#'
#' This function is a helper function for \code{\link{ghcnd_search}}. It helps
#' with cleaning up the data returned from \code{\link{ghcnd}}, to get it in a
#' format that is easier to work with.
#' @param x An object returned from \code{\link{ghcnd}}.
#' @author Scott Chamberlain \email{myrmecocystus@@gmail.com},
#' Adam Erickson \email{adam.erickson@@ubc.ca}
#' @note See [ghcnd()] examples
#' @export
ghcnd_splitvars <- function(x){
if (!inherits(x, "data.frame")) stop("input must be a data.frame", call. = FALSE)
if (!"id" %in% names(x)) stop("input not of correct format", call. = FALSE)
x <- x[!is.na(x$id), ]
patterns <- NULL
mflag <- NULL
qflag <- NULL
sflag <- NULL
out <- data.table::melt(data.table::as.data.table(x), id.vars = c("id", "year", "month", "element"),
variable.name = "day",
measure.vars = patterns(value = "VALUE",
mflag = "MFLAG",
qflag = "QFLAG",
sflag = "SFLAG")) %>%
dplyr::as_tibble() %>%
dplyr::mutate(date = as.Date(sprintf("%s-%s-%s", year, month, day), "%Y-%m-%d")) %>%
dplyr::filter(!is.na(date)) %>%
dplyr::select(-day, -month, -year) %>%
dplyr::mutate(element = tolower(element)) %>%
dplyr::select(id, value, date, mflag, qflag, sflag, element)
out <- split(out, out$element, drop = TRUE)
out <- lapply(out, function(y) {
colnames(y)[colnames(y) == "value"] <- unique(y$element)
dplyr::select(y, -element)
})
return(out[tolower(unique(x$element))])
}
## helpers -------
ghcnd_col_classes <- c(
"character", "integer", "integer", "character",
rep(c("integer", "character", "character", "character"), times = 31)
)
remove_na_row <- function(x) {
if (!any(x[,1] == "NA") && !any(is.na(x[,1]))) return(x)
return(x[!as.character(x[,1]) %in% c("NA", NA_character_), ])
}
strex <- function(x) str_extract_(x, "[0-9]+")
as_tc <- function(x) textConnection(enc2utf8(rawToChar(x)))
as_tc_p <- function(x) textConnection(x$parse("latin1"))
ghcnd_GET <- function(stationid, ...){
ghcnd_cache$mkdir()
fp <- ghcnd_local(stationid)
cli <- crul::HttpClient$new(ghcnd_remote(stationid), opts = list(...))
res <- suppressWarnings(cli$get())
tt <- res$parse("UTF-8")
vars <- c("id","year","month","element",
do.call("c",
lapply(1:31, function(x) paste0(c("VALUE","MFLAG","QFLAG","SFLAG"), x))))
df <- read.fwf(textConnection(tt), c(11,4,2,4,rep(c(5,1,1,1), 31)),
na.strings = "-9999")
df[] <- Map(function(a, b) {
if (b == "integer") {
a <- as.character(a)
}
suppressWarnings(eval(parse(text = paste0("as.", b)))(a))
}, df, ghcnd_col_classes)
dat <- stats::setNames(df, vars)
write.csv(dat, fp, row.names = FALSE)
return(dat)
}
ghcndbase <- function() "ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/all"
ghcnd_remote <- function(stationid) {
file.path(ghcndbase(), paste0(stationid, ".dly"))
}
ghcnd_local <- function(stationid) {
file.path(ghcnd_cache$cache_path_get(), paste0(stationid, ".dly"))
}
is_ghcnd <- function(x) if (file.exists(x)) TRUE else FALSE
str_extract_ <- function(string, pattern) {
regmatches(string, regexpr(pattern, string))
}
str_extract_all_ <- function(string, pattern) {
regmatches(string, gregexpr(pattern, string))
}
.datatable.aware = TRUE