-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwandb_sweep.yaml
111 lines (84 loc) · 2.54 KB
/
wandb_sweep.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# sweep.yaml
program: train.py
method: grid # Using 'grid' to exhaustively search all values of push_all_lags_by
metric:
name: validation_1-mae.min # Ensure this matches the metric logged in your training script
goal: minimize
parameters:
# Fixed Parameters from config.yaml
model:
value: "xgboost"
lags:
value: [1, 2, 3, 6, 12, 13, 14, 24, 25, 26, 48, 49, 72, 168]
rolling_avgs:
value: [1, 3, 9, 24, 48, 72, 86, 168]
delta_reference_points:
value:
- [1, 2]
- [1, 3]
- [1, 6]
- [1, 24]
- [24, 25]
- [48, 49]
- [169, 1]
- [168, 169]
std_windows:
value: [3, 6, 12, 24, 48, 72, 86, 168]
num_zeros_windows:
value: [6, 12, 24]
hour_shifts:
value: [0, 6, 12, 18]
weekday_shifts:
value: [0, 3, 6]
target_forward_shift:
values: [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104,
105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118,
119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146,
147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
161, 162, 163, 164, 165, 166, 167]
use_station_id_feat:
value: true
use_cell_id_feat:
value: true
use_beam_id_feat:
value: true
# train_percentage:
# value: 0.8
# val_percentage:
# value: 0.2
run_shap:
value: false
target_df_names:
value: ['thp_vol', 'mr_number']
feat_base_df_names:
value: ['thp_vol', 'mr_number']
enable_categorical:
value: true
# Fixed XGBoost Hyperparameters from config.yaml
eta:
value: 0.03
subsample:
value: 0.7
col_subsample:
value: 0.9
n_estimators:
value: 125
max_depth:
value: 8
min_child_weight:
value: 1 # Fixed value as per config.yaml
colsample_bytree:
value: 1.0 # Fixed value as per config.yaml
objective:
value: 'reg:squarederror'
eval_metric:
value: 'mae'
# early_stopping_rounds:
# value: 200