$env:TF_CPP_MIN_LOG_LEVEL=1
set -gx TF_CPP_MIN_LOG_LEVEL 1
Level | Level for Humans | Level Description |
---|---|---|
0 | DEBUG | [Default] Print all messages |
1 | INFO | Filter out INFO messages |
2 | WARNING | Filter out INFO & WARNING messages |
3 | ERROR | Filter out all messages |
$env:TF_GPU_ALLOCATOR=cuda_malloc_async
Install CUDA (same version as conda installed), find cupti64_*.dll
in C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\CUPTI\lib64
, copy to <conda env base dir>\Library\bin
From stackoverflow:
On Nvidia Control Panel, there is a Developer / Manage GPU Performance Counters section. Default toggle is to limit access to GPU preformance counters to admin users only. But you must select 'Allow acces to the GPU prformance counters to all users'. Once toggled, access permissions to the cupti dll are resolved. –
Activate TF conda env first
conda activate audio
python -c "from tensorflow.python.client import device_lib; print(device_lib.list_local_devices())"
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
set -gx LD_LIBRARY_PATH "$LD_LIBRARY_PATH:$CONDA_PREFIX/lib:$CONDA_PREFIX/lib/python3.10/site-packages/tensorrt"
set -gx XLA_FLAGS "--xla_gpu_cuda_data_dir=$CONDA_PREFIX/lib"
set -gx TF_GPU_ALLOCATOR cuda_malloc_async
Made symlinks in /home/emredjan/conda/envs/tf/lib/python3.10/site-packages/tensorrt
libnvinfer.so.7 -> libnvinfer.so.8
libnvinfer_plugin.so.7 -> libnvinfer_plugin.so.8
Install nvcc
conda install -c nvidia cuda-nvcc
conda install -c conda-forge ncurses #(may need specific build)
Copy lib
cd /home/emredjan/conda/envs/tf/lib
mkdir nvvm
mkdir nvvm/libdevice
cp libdevice.10.bc nvvm/libdevice/