-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathvisualise.py
325 lines (298 loc) · 14.3 KB
/
visualise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#! /usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import matplotlib
matplotlib.rc('font', family='Helvetica', size=18)
from matplotlib import pyplot as plt
import matplotlib.colors as colors
import matplotlib.cm as cmx
from utils.parameters import ParameterSpace, ParameterSpacePoint
from utils.parameters import PSlice as psl
from utils.visualisation import MIDetailPlotter, RectangularHeatmapPlotter, RasterPlot
from scripts.input_sparseness_analysis import binomial_poisson_sparseness, simulated_binomial_poisson_activity
#+++++debugging stuff+++++
#import pdb
#np.seterr(all='raise') # to convert warnings to exceptions (this allow to track the offending line)
#np.seterr(divide='ignore') # to suppress 'divide by zero' warnings
file_extension = 'eps'
diverging_colormap = 'RdYlBu_r'
linewidth = 1.5
plot_mi_heatmap = True
plot_sparseness = True
plot_mean_count = True
plot_mi_comparison_nsp = False
plot_line_comparison = False
plot_line_n_trials = False
plot_line_training_size = False
plot_line_sim_duration = False
plot_line_ana_duration = False
plot_mi_detail = False
plot_dendrograms = False
plot_mutual_information = False
plot_kl_divergence = False
plot_barcodes = False
plot_activity_levels = False
plot_out_entropy = False
plot_noise_entropy = False
plot_separation = False
plot_synchrony = False
plot_distance_matrix = False
plot_mi_vs_activity = False
plot_mi_vs_dn_and_sparsity = False
#+++++parameter ranges+++++++++++++
n_grc_dend = psl(1,21,1)
connectivity_rule = psl(0) # 0: tissue model, 1: random bipartite graph
input_spatial_correlation_scale = psl(0) # 0: uncorrelated
active_mf_fraction = psl(.05,1.,.05)
gaba_scale = psl(1)
dta = psl(0.)
inh_cond_scaling = psl(0.)
exc_cond_scaling = psl(1.)
modulation_frequency = psl(0)
stim_rate_mu = psl(80)
stim_rate_sigma = psl(0)
noise_rate_mu = psl(10)
noise_rate_sigma = psl(0)
n_stim_patterns = psl(1024)
n_trials = psl(60)
sim_duration = psl(180)
ana_duration = psl(30) # must be < min(sim_duration)
training_size = psl(30) # must be < min(n_trials)
multineuron_metric_mixing = psl(0.)
linkage_method = psl(1) # 0: ward, 1: kmeans
tau = psl(5)
dt = psl(2)
space = ParameterSpace(n_grc_dend,
connectivity_rule,
input_spatial_correlation_scale,
active_mf_fraction,
gaba_scale,
dta,
inh_cond_scaling,
exc_cond_scaling,
modulation_frequency,
stim_rate_mu,
stim_rate_sigma,
noise_rate_mu,
noise_rate_sigma,
n_stim_patterns,
n_trials,
sim_duration,
ana_duration,
training_size,
multineuron_metric_mixing,
linkage_method,
tau,
dt)
space.load_analysis_results()
if plot_mi_heatmap:
for noise in space.get_range('noise_rate_mu'):
subspace = space.get_nontrivial_subspace(('noise_rate_mu', noise))
rhm = RectangularHeatmapPlotter(subspace)
fig_mi, ax_mi, data_mi = rhm.plot_and_save(heat_dim='point_mi_qe', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension, aspect=2)
plt.close(rhm.fig)
np.savetxt('data_mi.csv', data_mi, delimiter=',')
if plot_line_n_trials:
training_size = 30
testing_size = space.get_range('n_trials') - training_size
subspace = space.get_nontrivial_subspace(('training_size', training_size))
mi_qe = subspace._get_attribute_array('point_mi_qe')
mi_pt = subspace._get_attribute_array('point_mi_pt')
mi_nsb = subspace._get_attribute_array('point_mi_nsb')
mi_plugin = subspace._get_attribute_array('point_mi_plugin')
fig, ax = plt.subplots(figsize=(3,1.75))
ax.locator_params(tight=True, nbins=5)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
np.savetxt('data_testing_size.csv', testing_size, delimiter=',')
np.savetxt('data_testing_size_mi_plugin.csv', mi_plugin.flat, delimiter=',')
np.savetxt('data_testing_size_mi_qe.csv', mi_qe.flat, delimiter=',')
ax.plot(testing_size, mi_plugin.flat, linewidth=linewidth, label='plugin', c='r')
ax.plot(testing_size, mi_pt.flat, linewidth=linewidth, label='pt', c='b')
ax.plot(testing_size, mi_nsb.flat, linewidth=linewidth, label='nsb', c='g')
ax.plot(testing_size, mi_qe.flat, linewidth=linewidth, label='qe', c='k')
ax.set_xlabel('Testing set size')
ax.set_ylabel('MI (bits)')
#ax.legend(loc='best')
fig.savefig('n_trials.'+file_extension)
if plot_line_training_size:
n_trials = 240
training_size = space.get_range('training_size')
subspace = space.get_nontrivial_subspace(('n_trials', n_trials))
mi_plugin = subspace._get_attribute_array('point_mi_plugin')
mi_qe = subspace._get_attribute_array('point_mi_qe')
mi_pt = subspace._get_attribute_array('point_mi_pt')
mi_nsb = subspace._get_attribute_array('point_mi_nsb')
fig, ax = plt.subplots(figsize=(3,1.75))
ax.locator_params(tight=True, nbins=5)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
#ax.plot(training_size, mi_pt.flat, linewidth=linewidth, label='pt')
#ax.plot(training_size, mi_nsb.flat, linewidth=linewidth, label='nsb')
#ax.plot(training_size, mi_plugin.flat, linewidth=linewidth, label='plugin', c='r')
np.savetxt('data_training_size.csv', training_size, delimiter=',')
np.savetxt('data_training_size_mi.csv', mi_qe.flat, delimiter=',')
ax.plot(training_size, mi_qe.flat, linewidth=linewidth, label='qe', c='k')
ax.set_xlabel('Training set size')
ax.set_ylabel('MI (bits)')
#ax.legend(loc='best')
fig.savefig('training_size.'+file_extension)
if plot_line_sim_duration:
ana_duration = 50
sim_duration = space.get_range('sim_duration')
subspace = space.get_nontrivial_subspace(('ana_duration', ana_duration))
mi_plugin = subspace._get_attribute_array('point_mi_plugin')
mi_qe = subspace._get_attribute_array('point_mi_qe')
mi_pt = subspace._get_attribute_array('point_mi_pt')
mi_nsb = subspace._get_attribute_array('point_mi_nsb')
fig, ax = plt.subplots()
ax.plot(sim_duration, mi_qe.flat, label='qe')
ax.plot(sim_duration, mi_pt.flat, label='pt')
ax.plot(sim_duration, mi_nsb.flat, label='nsb')
ax.plot(sim_duration, mi_plugin.flat, label='plugin')
ax.set_xlabel('simulation length (ms)')
ax.set_ylabel('MI (bits)')
ax.legend(loc='best')
fig.savefig('sim_duration.png')
if plot_line_ana_duration:
sim_duration = 200
ana_duration = space.get_range('ana_duration')
subspace = space.get_nontrivial_subspace(('sim_duration', sim_duration))
mi_plugin = subspace._get_attribute_array('point_mi_plugin')
mi_qe = subspace._get_attribute_array('point_mi_qe')
mi_pt = subspace._get_attribute_array('point_mi_pt')
mi_nsb = subspace._get_attribute_array('point_mi_nsb')
fig, ax = plt.subplots()
ax.plot(ana_duration, mi_qe.flat, label='qe')
ax.plot(ana_duration, mi_pt.flat, label='pt')
ax.plot(ana_duration, mi_nsb.flat, label='nsb')
ax.plot(ana_duration, mi_plugin.flat, label='plugin')
ax.set_xlabel('analysis length (ms)')
ax.set_ylabel('MI (bits)')
ax.legend(loc='best')
fig.savefig('ana_duration.png')
if plot_mi_comparison_nsp:
n_stim_patterns_2 = psl(1024)
sim_duration_2 = psl(200)
space2 = ParameterSpace(n_grc_dend,
connectivity_rule,
input_spatial_correlation_scale,
active_mf_fraction,
extra_tonic_inhibition,
stim_rate_mu,
stim_rate_sigma,
noise_rate_mu,
noise_rate_sigma,
n_stim_patterns_2,
n_trials,
sim_duration_2,
ana_duration,
training_size,
multineuron_metric_mixing,
linkage_method,
tau,
dt)
space2.load_analysis_results()
for gd in [4,5,6]:
subspace1 = space.get_nontrivial_subspace(('n_grc_dend', gd))
subspace2 = space2.get_nontrivial_subspace(('n_grc_dend', gd))
rhm1 = RectangularHeatmapPlotter(subspace1)
rhm2 = RectangularHeatmapPlotter(subspace2)
fig, ax, data1 = rhm1.plot(heat_dim='point_mi_qe')
fig, ax, data2 = rhm2.plot(heat_dim='point_mi_qe')
fig_mi_compare, ax_mi_compare = plt.subplots()
ax_mi_compare.plot(subspace1.get_range('active_mf_fraction'), data1.flat/np.log2(128), label='128 patterns', linewidth=1.5, color='k')
ax_mi_compare.plot(subspace2.get_range('active_mf_fraction'), data2.flat/np.log2(1024), label='1024 patterns', linewidth=1.5, color='r')
ax_mi_compare.set_xlabel('p(MF)')
ax_mi_compare.set_ylabel('MI/H(input)')
ax_mi_compare.legend(loc='best')
ax_mi_compare.set_title('{} dendrites'.format(gd))
fig_mi_compare.savefig('mi_nsp_comparison_gd{}.png'.format(gd))
if plot_line_comparison:
cm = plt.get_cmap('RdYlBu')
c_norm = colors.Normalize(vmin=0, vmax=space.get_range('n_grc_dend')[-1])
scalar_map = cmx.ScalarMappable(norm=c_norm, cmap=cm)
fig_mi, ax_mi = plt.subplots()
fig_sparseness, ax_sparseness = plt.subplots()
ax_mi.set_xlabel('p(MF)')
ax_mi.set_ylabel('MI (bits)')
ax_sparseness.set_xlabel('p(MF)')
ax_sparseness.set_ylabel('p(GC)')
for gd in space.get_range('n_grc_dend'):
subspace = space.get_nontrivial_subspace(('n_grc_dend', gd))
data_mi = subspace._get_attribute_array('point_mi_qe')
data_o_sparseness = subspace._get_attribute_array('o_sparseness_activity')
color = scalar_map.to_rgba(gd)
ax_mi.plot(subspace.get_range('active_mf_fraction'), data_mi, color=color)
ax_sparseness.plot(subspace.get_range('active_mf_fraction'), data_o_sparseness, color=color)
fig_mi.savefig('line_detail_mi.png')
fig_sparseness.savefig('line_detail_sparseness.png')
if plot_sparseness:
for noise in space.get_range('noise_rate_mu'):
subspace = space.get_nontrivial_subspace(('noise_rate_mu', noise))
rhm = RectangularHeatmapPlotter(subspace)
fig, ax, data_a_i = rhm.plot_and_save(heat_dim='i_sparseness_activity', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension)
rhm = RectangularHeatmapPlotter(subspace)
fig, ax, data_a_o = rhm.plot_and_save(heat_dim='o_sparseness_activity', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension)
rhm = RectangularHeatmapPlotter(subspace)
fig, ax, data_h_i = rhm.plot_and_save(heat_dim='i_sparseness_hoyer', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension)
rhm = RectangularHeatmapPlotter(subspace)
fig, ax, data_h_o = rhm.plot_and_save(heat_dim='o_sparseness_hoyer', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension)
rhm = RectangularHeatmapPlotter(subspace)
fig, ax, data_v_i = rhm.plot_and_save(heat_dim='i_sparseness_vinje', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension)
rhm = RectangularHeatmapPlotter(subspace)
fig, ax, data_v_o = rhm.plot_and_save(heat_dim='o_sparseness_vinje', base_dir='/home/ucbtepi/code/network/figures', file_extension=file_extension)
# use data extracted for input and output activity sparseness
# to visualise sparsification
fig, ax = plt.subplots(figsize=(4,6))
data_sparsification = (1-data_v_o)/(1-data_v_i)
plot = ax.imshow(data_sparsification, interpolation='none', cmap=diverging_colormap, origin='lower', vmin=0.7, vmax=1.9)
cbar = fig.colorbar(plot, orientation='horizontal')
cbar.set_label('Sparsification')
cbar.set_ticks([data_sparsification.min(), 1,
data_sparsification.max()])
cbar.set_ticklabels([data_sparsification.min().round(3), 1,
data_sparsification.max().round(3)])
ax.get_xaxis().tick_bottom()
ax.get_yaxis().tick_left()
ax.set_xlabel('p(MF)')
ax.set_ylabel('Synaptic connections')
ax.set_xticks(ax_mi.get_xticks())
ax.set_yticks(ax_mi.get_yticks())
ax.set_xticklabels([l.get_text() for l in ax_mi.get_xticklabels()])
ax.set_yticklabels([l.get_text() for l in ax_mi.get_yticklabels()])
fig.savefig('sparsification.'+file_extension)
plt.close(rhm.fig)
# save some data files for manual figure making
np.savetxt('data_a_mf.csv', data_a_i, delimiter=',')
np.savetxt('data_a_gc.csv', data_a_o, delimiter=',')
np.savetxt('data_h_mf.csv', data_a_i, delimiter=',')
np.savetxt('data_h_gc.csv', data_a_o, delimiter=',')
np.savetxt('data_v_mf.csv', data_a_i, delimiter=',')
np.savetxt('data_v_gc.csv', data_a_o, delimiter=',')
if plot_mean_count:
# plot mean output spike count vs mean input spike count
cm = plt.get_cmap(diverging_colormap)
c_norm = colors.Normalize(vmin=0, vmax=space.get_range('n_grc_dend')[-1])
scalar_map = cmx.ScalarMappable(norm=c_norm, cmap=cm)
fig, ax = plt.subplots()
ax.set_xlabel('Average spikes per MF')
ax.set_ylabel('Average spikes per GC')
for gd in space.get_range('n_grc_dend'):
c = scalar_map.to_rgba(gd)
subspace = space.get_nontrivial_subspace(('n_grc_dend', gd))
ax.plot(subspace._get_attribute_array('i_mean_count'),
subspace._get_attribute_array('o_mean_count'),
color=c,
linewidth=1.5)
fig.savefig('mean_count.{}'.format(file_extension))
# save some data files for manual figure making
np.save('data_i_mean_count.npy', np.squeeze(space._get_attribute_array('i_mean_count')))
np.save('data_o_mean_count.npy', np.squeeze(space._get_attribute_array('o_mean_count')))
if plot_mi_detail:
for p in space.flat:
print p
midp = MIDetailPlotter(p)
midp.plot()
midp.save()
plt.close(midp.fig)