-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathsample.py
198 lines (176 loc) · 8.79 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
''' Sample
This script loads a pretrained net and a weightsfile and sample '''
import functools
import math
import numpy as np
from tqdm import tqdm, trange
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
import torchvision
# Import my stuff
import inception_utils
import utils
import losses
def run(config):
# Prepare state dict, which holds things like epoch # and itr #
state_dict = {'itr': 0, 'epoch': 0, 'save_num': 0, 'save_best_num': 0,
'best_IS': 0, 'best_FID': 999999, 'config': config}
# Optionally, get the configuration from the state dict. This allows for
# recovery of the config provided only a state dict and experiment name,
# and can be convenient for writing less verbose sample shell scripts.
if config['config_from_name']:
utils.load_weights(None, None, state_dict, config['weights_root'],
config['experiment_name'], config['load_weights'], None,
strict=False, load_optim=False)
# Ignore items which we might want to overwrite from the command line
for item in state_dict['config']:
if item not in ['z_var', 'base_root', 'batch_size', 'G_batch_size', 'use_ema', 'G_eval_mode']:
config[item] = state_dict['config'][item]
# update config (see train.py for explanation)
config['resolution'] = utils.imsize_dict[config['dataset']]
config['n_classes'] = utils.nclass_dict[config['dataset']]
config['G_activation'] = utils.activation_dict[config['G_nl']]
config['D_activation'] = utils.activation_dict[config['D_nl']]
config = utils.update_config_roots(config)
config['skip_init'] = True
config['no_optim'] = True
device = 'cuda'
# Seed RNG
# utils.seed_rng(config['seed']) # config['seed'])
# Setup cudnn.benchmark for free speed
torch.backends.cudnn.benchmark = True
# Import the model--this line allows us to dynamically select different files.
model = __import__(config['model'])
experiment_name = (config['experiment_name'] if config['experiment_name']
else utils.name_from_config(config))
print('Experiment name is %s' % experiment_name)
G = model.Generator(**config).cuda()
utils.count_parameters(G)
# Load weights
print('Loading weights...')
# Here is where we deal with the ema--load ema weights or load normal weights
utils.load_weights(G if not (config['use_ema']) else None, None, state_dict,
config['weights_root'], experiment_name, config['load_weights'],
G if config['ema'] and config['use_ema'] else None,
strict=False, load_optim=False)
# Update batch size setting used for G
G_batch_size = max(config['G_batch_size'], config['batch_size'])
z_, y_ = utils.prepare_z_y(G_batch_size, G.dim_z, config['n_classes'],
device=device, fp16=config['G_fp16'],
z_var=config['z_var'])
if config['G_eval_mode']:
print('Putting G in eval mode..')
G.eval()
else:
print('G is in %s mode...' % ('training' if G.training else 'eval'))
# Sample function
sample = functools.partial(utils.sample, G=G, z_=z_, y_=y_, config=config)
if config['accumulate_stats']:
print('Accumulating standing stats across %d accumulations...' %
config['num_standing_accumulations'])
utils.accumulate_standing_stats(G, z_, y_, config['n_classes'],
config['num_standing_accumulations'])
# Sample a number of images and save them to an NPZ, for use with TF-Inception
if config['sample_npz']:
# Lists to hold images and labels for images
x, y = [], []
print('Sampling %d images and saving them to npz...' %
config['sample_num_npz'])
for i in trange(int(np.ceil(config['sample_num_npz'] / float(G_batch_size)))):
with torch.no_grad():
images, labels = sample()
x += [np.uint8(255 * (images.cpu().numpy() + 1) / 2.)]
y += [labels.cpu().numpy()]
x = np.concatenate(x, 0)[:config['sample_num_npz']]
y = np.concatenate(y, 0)[:config['sample_num_npz']]
print('Images shape: %s, Labels shape: %s' % (x.shape, y.shape))
npz_filename = '%s/%s/samples.npz' % (
config['samples_root'], experiment_name)
print('Saving npz to %s...' % npz_filename)
np.savez(npz_filename, **{'x': x, 'y': y})
print("images have been sampled")
return
# Prepare sample sheets
if config['sample_sheets']:
print('Preparing conditional sample sheets...')
utils.sample_sheet(G, classes_per_sheet=utils.classes_per_sheet_dict[config['dataset']],
num_classes=config['n_classes'],
samples_per_class=10, parallel=config['parallel'],
samples_root=config['samples_root'],
experiment_name=experiment_name,
folder_number=config['sample_sheet_folder_num'],
z_=z_,)
# Sample interp sheets
if config['sample_interps']:
print('Preparing interp sheets...')
for fix_z, fix_y in zip([False, False, True], [False, True, False]):
utils.interp_sheet(G, num_per_sheet=16, num_midpoints=8,
num_classes=config['n_classes'],
parallel=config['parallel'],
samples_root=config['samples_root'],
experiment_name=experiment_name,
folder_number=config['sample_sheet_folder_num'],
sheet_number=0,
fix_z=fix_z, fix_y=fix_y, device='cuda')
# Sample random sheet
if config['sample_random']:
print('Preparing random sample sheet...')
images, labels = sample()
torchvision.utils.save_image(images.float(),
'%s/%s/random_samples.jpg' % (
config['samples_root'], experiment_name),
nrow=int(G_batch_size**0.5),
normalize=True)
# Get Inception Score and FID
get_inception_metrics = inception_utils.prepare_inception_metrics(
config['dataset'], config['parallel'], config['no_fid'])
# Prepare a simple function get metrics that we use for trunc curves
def get_metrics():
sample = functools.partial(
utils.sample, G=G, z_=z_, y_=y_, config=config)
IS_mean, IS_std, FID = get_inception_metrics(
sample, config['num_inception_images'], num_splits=10, prints=False)
# Prepare output string
outstring = 'Using %s weights ' % (
'ema' if config['use_ema'] else 'non-ema')
outstring += 'in %s mode, ' % (
'eval' if config['G_eval_mode'] else 'training')
outstring += 'with noise variance %3.3f, ' % z_.var
outstring += 'over %d images, ' % config['num_inception_images']
if config['accumulate_stats'] or not config['G_eval_mode']:
outstring += 'with batch size %d, ' % G_batch_size
if config['accumulate_stats']:
outstring += 'using %d standing stat accumulations, ' % config['num_standing_accumulations']
outstring += 'Itr %d: PYTORCH UNOFFICIAL Inception Score is %3.3f +/- %3.3f, PYTORCH UNOFFICIAL FID is %5.4f' % (
state_dict['itr'], IS_mean, IS_std, FID)
print(outstring)
if config['sample_inception_metrics']:
print('Calculating Inception metrics...')
get_metrics()
# Sample truncation curve stuff. This is basically the same as the inception metrics code
if config['sample_trunc_curves']:
start, step, end = [
float(item) for item in config['sample_trunc_curves'].split('_')]
print('Getting truncation values for variance in range (%3.3f:%3.3f:%3.3f)...' % (
start, step, end))
for var in np.arange(start, end + step, step):
z_.var = var
# Optionally comment this out if you want to run with standing stats
# accumulated at one z variance setting
if config['accumulate_stats']:
utils.accumulate_standing_stats(G, z_, y_, config['n_classes'],
config['num_standing_accumulations'])
get_metrics()
def main():
# parse command line and run
parser = utils.prepare_parser()
parser = utils.add_sample_parser(parser)
config = vars(parser.parse_args())
print(config)
run(config)
if __name__ == '__main__':
main()