-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathckpt_util.py
72 lines (65 loc) · 3.11 KB
/
ckpt_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os, hashlib
import requests
from tqdm import tqdm
URL_MAP = {
"cifar10": "https://heibox.uni-heidelberg.de/f/869980b53bf5416c8a28/?dl=1",
"ema_cifar10": "https://heibox.uni-heidelberg.de/f/2e4f01e2d9ee49bab1d5/?dl=1",
"lsun_bedroom": "https://heibox.uni-heidelberg.de/f/f179d4f21ebc4d43bbfe/?dl=1",
"ema_lsun_bedroom": "https://heibox.uni-heidelberg.de/f/b95206528f384185889b/?dl=1",
"lsun_cat": "https://heibox.uni-heidelberg.de/f/fac870bd988348eab88e/?dl=1",
"ema_lsun_cat": "https://heibox.uni-heidelberg.de/f/0701aac3aa69457bbe34/?dl=1",
"lsun_church": "https://heibox.uni-heidelberg.de/f/2711a6f712e34b06b9d8/?dl=1",
"ema_lsun_church": "https://heibox.uni-heidelberg.de/f/44ccb50ef3c6436db52e/?dl=1",
}
CKPT_MAP = {
"cifar10": "diffusion_cifar10_model/model-790000.ckpt",
"ema_cifar10": "ema_diffusion_cifar10_model/model-790000.ckpt",
"lsun_bedroom": "diffusion_lsun_bedroom_model/model-2388000.ckpt",
"ema_lsun_bedroom": "ema_diffusion_lsun_bedroom_model/model-2388000.ckpt",
"lsun_cat": "diffusion_lsun_cat_model/model-1761000.ckpt",
"ema_lsun_cat": "ema_diffusion_lsun_cat_model/model-1761000.ckpt",
"lsun_church": "diffusion_lsun_church_model/model-4432000.ckpt",
"ema_lsun_church": "ema_diffusion_lsun_church_model/model-4432000.ckpt",
}
MD5_MAP = {
"cifar10": "82ed3067fd1002f5cf4c339fb80c4669",
"ema_cifar10": "1fa350b952534ae442b1d5235cce5cd3",
"lsun_bedroom": "f70280ac0e08b8e696f42cb8e948ff1c",
"ema_lsun_bedroom": "1921fa46b66a3665e450e42f36c2720f",
"lsun_cat": "bbee0e7c3d7abfb6e2539eaf2fb9987b",
"ema_lsun_cat": "646f23f4821f2459b8bafc57fd824558",
"lsun_church": "eb619b8a5ab95ef80f94ce8a5488dae3",
"ema_lsun_church": "fdc68a23938c2397caba4a260bc2445f",
}
def download(url, local_path, chunk_size=1024):
os.makedirs(os.path.split(local_path)[0], exist_ok=True)
with requests.get(url, stream=True) as r:
total_size = int(r.headers.get("content-length", 0))
with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
with open(local_path, "wb") as f:
for data in r.iter_content(chunk_size=chunk_size):
if data:
f.write(data)
pbar.update(chunk_size)
def md5_hash(path):
with open(path, "rb") as f:
content = f.read()
return hashlib.md5(content).hexdigest()
def get_ckpt_path(name, root=None, check=False):
if 'church_outdoor' in name:
name = name.replace('church_outdoor', 'church')
assert name in URL_MAP
# Modify the path when necessary
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("/atlas/u/tsong/.cache"))
root = (
root
if root is not None
else os.path.join(cachedir, "diffusion_models_converted")
)
path = os.path.join(root, CKPT_MAP[name])
if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
download(URL_MAP[name], path)
md5 = md5_hash(path)
assert md5 == MD5_MAP[name], md5
return path