-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
52 lines (43 loc) · 1.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import torch
class EarlyStopping:
"""Early stops the training if validation loss doesn't improve after a given patience."""
def __init__(self, save_path, patience=50, verbose=False, delta=1e-5):
"""
Args:
patience (int): How long to wait after last time validation loss improved.
Default: 7
verbose (bool): If True, prints a message for each validation loss improvement.
Default: False
delta (float): Minimum change in the monitored quantity to qualify as an improvement.
Default: 0
"""
self.save_path = save_path
self.patience = patience
self.verbose = verbose
self.counter = 0
self.best_score = None
self.early_stop = False
self.val_loss_min = np.Inf
self.delta = delta
self.params = None
def __call__(self, val_loss, model):
score = -val_loss
if self.best_score is None:
self.best_score = score
self.params = model.state_dict()
elif score < self.best_score - self.delta:
self.counter += 1
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
self.best_score = score
self.params = model.state_dict()
self.counter = 0
if self.early_stop is True:
self.save_checkpoint()
return self.early_stop
def save_checkpoint(self):
'''Saves model when validation loss decrease.'''
torch.save(self.params, self.save_path)