-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_classification.py
178 lines (145 loc) · 6.72 KB
/
train_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from data_processing import datasets
from pointnet import attacks
from pointnet.model import PointNet
from util import logging
from util.math import set_random_seed, DEFAULT_SEED
parser = argparse.ArgumentParser()
parser.add_argument('--out', type=str, required=True, help='path of output directory')
parser.add_argument('--dataset', type=str, default='modelnet40', help='the dataset to use', choices=['modelnet40'])
parser.add_argument('--batch_size', type=int, default=32, help='mini-batch size')
parser.add_argument('--epochs', type=int, default=200, help='number of epochs to train for')
parser.add_argument('--num_points', type=int, default=1024, help='number of points per point cloud')
parser.add_argument('--seed', type=int, default=DEFAULT_SEED, help='seed for random number generator')
parser.add_argument('--ignore_existing_output_dir', action='store_true', help='ignore if output dir exists')
parser.add_argument('--num_workers', type=int, default=0, help='number of parallel data loader workers')
parser.add_argument('--defense', action='store_true', help='use adversarial training')
parser.add_argument('--eps', type=float, default=0.02, help='radius of eps-box to defend around point')
parser.add_argument('--step_size', type=float, default=None, help='step size for FGSM')
parser.add_argument('--lr', type=float, default=0.001, help='optimizer learning rate')
parser.add_argument('--max_features', type=int, default=1024, help='the number of features for max pooling')
parser.add_argument('--pooling', choices=['max', 'avg', 'sum'], default='max', help='global pooling function')
parser.add_argument('--domain', choices=['box', 'face'], default='box', help='The attack model domain')
parser.add_argument('--rotation', choices=['none', 'z', 'so3'], default='z', help='Axis for rotation augmentation')
settings = parser.parse_args()
settings.device = 'cuda' if torch.cuda.is_available() else 'cpu'
settings.out = os.path.join('out', settings.out)
if not settings.step_size:
settings.step_size = 1.25 * settings.eps
os.makedirs(settings.out, exist_ok=settings.ignore_existing_output_dir)
log_name = f"train_defended[{settings.defense}]_eps[{settings.eps}]_rotation[settings.rotation]_pooling[{settings.pooling}]"
logger = logging.create_logger(settings.out, log_name)
logger.info(settings)
writer = SummaryWriter(log_dir=settings.out)
set_random_seed(settings.seed)
train_data = datasets.modelnet40(num_points=settings.num_points, split='train', rotate=settings.rotation)
test_data = datasets.modelnet40(num_points=settings.num_points, split='test', rotate='none')
train_loader = DataLoader(
dataset=train_data,
batch_size=settings.batch_size,
shuffle=True,
num_workers=settings.num_workers
)
test_loader = DataLoader(
dataset=test_data,
batch_size=settings.batch_size,
shuffle=False,
num_workers=settings.num_workers
)
print("Train Size: ", len(train_data))
print("Test Size: ", len(test_data))
print("Total Size: ", len(test_data) + len(train_data))
distribution = np.zeros(40, dtype=int)
for sample in train_data:
_, _, label = sample
distribution[label.item()] += 1
print(distribution)
num_batches = len(train_data) / settings.batch_size
logger.info("Number of batches: %d", num_batches)
logger.info("Number of classes: %d", train_data.num_classes)
logger.info("Training set size: %d", len(train_data))
logger.info("Test set size: %d", len(test_data))
model = PointNet(
number_points=settings.num_points,
num_classes=train_data.num_classes,
max_features=settings.max_features,
pool_function=settings.pooling
)
model = model.to(settings.device)
objective = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=settings.lr, betas=(0.9, 0.999))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.5)
logger.info("starting training")
for epoch in range(settings.epochs):
train_correct = 0
train_amount = 0
train_loss = 0
for i, data in enumerate(tqdm(train_loader)):
points, faces, label = data
label: torch.Tensor = torch.squeeze(label)
points: torch.Tensor = points.float().to(settings.device)
faces: torch.Tensor = faces.float().to(settings.device)
label: torch.Tensor = label.to(settings.device)
if settings.defense:
if settings.domain == "box":
domain = attacks.EpsBox(points, settings.eps)
elif settings.domain == "face":
domain = attacks.FaceBox(faces)
else:
assert False, f"Unsupported domain {settings.domain}"
model.eval()
points = domain.random_point()
points = attacks.fgsm(model, points, label, step_size=settings.step_size)
points = domain.project(points)
model.train()
optimizer.zero_grad()
predictions = model(points)
loss = objective(predictions, label)
loss.backward()
optimizer.step()
max_predictions = predictions.data.max(1)[1]
correct = max_predictions.eq(label.data).cpu().sum()
train_correct += correct.item()
train_amount += points.size()[0]
train_loss += loss.item()
test_correct = 0
test_amount = 0
test_loss = 0
for i, data in enumerate(test_loader):
points, _, label = data
points = points[:, : settings.num_points, :]
label = torch.squeeze(label)
points = points.to(settings.device)
label = label.to(settings.device)
model = model.eval()
predictions = model(points)
loss = objective(predictions, label)
max_predictions = predictions.data.max(1)[1]
correct = max_predictions.eq(label.data).cpu().sum()
test_correct += correct.item()
test_amount += points.size()[0]
test_loss += loss.item()
logger.info(
"Epoch {epoch}: train loss: {train_loss}, train accuracy: {train_accuracy}, test loss: {test_loss}, test accuracy: {test_accuracy}".format(
epoch=epoch,
train_loss=train_loss,
train_accuracy=train_correct / train_amount,
test_loss=test_loss,
test_accuracy=test_correct / test_amount
)
)
writer.add_scalar('accuracy/train', train_correct / train_amount, epoch)
writer.add_scalar('loss/train', train_loss / train_amount, epoch)
writer.add_scalar('accuracy/test', test_correct / test_amount, epoch)
writer.add_scalar('loss/test', test_loss / test_amount, epoch)
scheduler.step()
torch.save(model.state_dict(), os.path.join(settings.out, "model.pth"))
logger.info("finished training")