-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.sh
64 lines (57 loc) · 2.53 KB
/
train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#### Train BasicVSR with Reds
python3 main.py --save_dir ./train/REDS/FVSR_x8_simple_v1_dcn2_v11 \
--reset True \
--log_file_name train.log \
--num_gpu 4 \
--gpu_id 0 \
--num_workers 9 \
--dataset Reds \
--dataset_dir /DATA/REDS_sharp/ \
--model_path ./train/REDS/FVSR_x8_simple_v1_dcn2_v10/model/model_00002_005600.pt \
--n_feats 64 \
--lr_rate 2e-4 \
--lr_rate_flow 2.5e-5 \
--rec_w 1 \
--scale 8 \
--cra true \
--mrcf true \
--batch_size 8 \
--FV_size 128 \
--GT_size 256 \
--N_frames 15 \
--y_only false \
--num_init_epochs 2 \
--num_epochs 80 \
--print_every 200 \
--save_every 100 \
--val_every 1 \
--visdom_port 8803 \
--visdom_view 1227_FVSR_x8_simple_v1_dcn2_v11
### simple_v1 dk=1, fd=32-> 8, lv1, range=10, dcn_gp=16
### simple_v2 dk=3, fd=32-> 8, lv1, range=10, dcn_gp=16
### simple_v3 dk=3, fd=64->16, lv1, range=10, dcn_gp=16
### simple_v4 dk=1, fd=32-> 8, lv3, range=10, dcn_gp= 1
### simple_v5 dk=3, fd=32-> 8, lv3, range=10, dcn_gp= 1
### simple_v6 dk=3, fd=32-> 8, lv3, range=80, dcn_gp= 1
### simple_v7 dk=3, fd=32-> 8, lv3, range=80, dcn_gp= 4
### simple_v8 dk=3, fd=64->16, lv3, range=80, dcn_gp= 4
### simple_v9 dk=3, fd=64-> 8, lv3, range=80, dcn_gp= 4
### simple_v10 dk=3, fd=32->16, lv3, range=80, dcn_gp= 4
### simple_v11 dk=1, fd=32->16, lv3, range=80, dcn_gp=16
### simple_duf dk=1, fd=32-> 8, lv1, range=10, dcn_gp=16
### simple_v12 dk=1, fd=32->32, lv3, range=80, dcn_gp= 4
### simple_v13 dk=1, fd=32->32, lv3, range=80, dcn_gp= 4, dcn * 2, res * 2
### dcn3_v1 dcn * 3, dk=1
### dcn3_v2 dcn * 3, dk=3(offset using repeat)
### dcn3_v3 dcn * 3, dk=3(offset & mask using repeat)
### dcn2_v1 dcn * 2, dk=1
### dcn2_v2 dcn * 2, dk=1, offset finetune(mean of generated offset)
### dcn2_v3 dcn * 2, dk=1, upsample * 2
### dcn2_v4 dcn * 2, dk=1, res_block * 2
### dcn2_v5 dcn * 2, dk=1, branch out
### dcn2_v6 dcn * 2, dk=1, deeper downsampel layer(conv2d * 2)
### dcn2_v7 dcn * 2, dk=1, deeper downsampel layer(conv2d * 4)
### dcn2_v8 dcn * 2, dk=1, v4 deeper downsampel layer(PS * 2)
### dcn2_v9 dcn * 2, dk=1, channel dimension = 32
### dcn2_v10 dcn * 4, dk=1, channel dimension = 32
### dcn2_v11 pca , dk=1, channel dimension = 32