This repository has been archived by the owner on Sep 1, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_ae.py
166 lines (136 loc) · 5.48 KB
/
train_ae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import argparse
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import geoopt
from src.batchmodels import HyperbolicAutoEncoder, SimpleAutoEncoder, PureSVD, MobiusAutoEncoder
from src.batchrunner import train, evaluate, report_metrics
from src.datareader import read_data
from src.datasets import observations_loader, UserBatchDataset
from src.random import random_seeds, fix_torch_seed
assert torch.cuda.is_available()
#in our experiments, we have used wandb framework to run experiments
#entity = ...
#project = ...
# import wandb
# wandb.init(entity=entity, project=project)
####################PARAMETERS####################
parser = argparse.ArgumentParser()
parser.add_argument("--datapack", type=str, required=True, choices=["persdiff", "urm"])
parser.add_argument("--dataname", type=str, required=True) # depends on choice of data pack
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--test_negative_samples", type=int, default=999)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--embedding_dim", type=int, default=64)
parser.add_argument("--hidden_dim_factor", type=int, default=2)
parser.add_argument("--num_encoders", type=int, default=1)
parser.add_argument("--c", type=float, default=0.5)
parser.add_argument("--gamma", type=float, default=0.7)
parser.add_argument("--step_size", type=int, default=7)
parser.add_argument("--epochs", type=int, default=20)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--loss", type=str, default="mse", choices=["mse", "bce"])
parser.add_argument("--show-progress", default=False, action='store_true')
parser.add_argument("--activation", default="no", choices=["tanh", "relu", "no"])
parser.add_argument("--model", default="hyplinear", choices=["hyplinear", "mobius", "linear"])
parser.add_argument("--data_dir", default="./data/")
parser.add_argument("--no-coverage", default=False, action='store_true')
# wandb compatibility
parser.add_argument("--bias", type=str, default="True")
parser.add_argument("--masked_loss", type=str, default="False")
parser.add_argument("--scheduler_on", type=str, default="True")
parser.add_argument("--last_layer_activation", type=str, default="True")
args = parser.parse_args()
###############INITIALIZATION###############
# data description
userid = "userid"
itemid = "itemid"
feedback = None
# randomization control
seeds = random_seeds(6, args.seed)
rand_seed_val, rand_seed_test = seeds[:2]
runner_seed_val, runner_seed_test = seeds[2:4]
sampler_seed_val, sampler_seed_test = seeds[4:]
fix_torch_seed(args.seed)
train_mat_val, valid_data, *unused_test_data = read_data(
args.data_dir,
args.datapack,
args.dataname,
n_negative_samples=args.test_negative_samples,
preserve_order=False,
seed_val = rand_seed_val,
seed_test = rand_seed_test
)
train_loader = observations_loader(
observations = train_mat_val,
batch_size = args.batch_size,
shuffle = True,
data_factory = UserBatchDataset,
sparse_batch = True # can use .to_dense on a batch for calculations
)
infer_loader = observations_loader(
observations = train_mat_val,
batch_size = 1,
shuffle = False,
data_factory = UserBatchDataset,
sparse_batch = True,
)
eval_gr = pd.DataFrame(valid_data).groupby(0, sort=False)
eval_data = dict(
items_data={uid: torch.cuda.LongTensor(gr.values) for uid, gr in eval_gr[1]},
label_data={uid: torch.cuda.LongTensor(gr.values) for uid, gr in eval_gr[2]}
)
######################MODEL#######################
# wandb compatibility
bias = (args.bias == "True")
masked_loss = (args.masked_loss =="True")
scheduler_on = (args.scheduler_on == "True")
last_layer_activation = (args.last_layer_activation =="True")
autoencoder_config = dict(
num_items = train_loader.dataset.num_items,
latent_dim = args.embedding_dim,
hidden_dim = args.embedding_dim // args.hidden_dim_factor,
num_encoders = args.num_encoders,
activation = args.activation,
last_layer_activation = True, # <== due to bug all previous computations were made with True, hardcoding it for now
bias = True # <== due to bug all previous computations were made with True, hardcoding it for now
)
if args.model == "linear":
model = SimpleAutoEncoder(**autoencoder_config).cuda()
elif args.model == "hyplinear":
model = HyperbolicAutoEncoder(c=args.c, **autoencoder_config).cuda()
elif args.model == "mobius":
model = MobiusAutoEncoder(c=args.c, **autoencoder_config).cuda()
else:
raise ValueError('Unrecognized model type')
criterions = {
"mse": nn.MSELoss(reduction='mean'),
"bce": nn.BCEWithLogitsLoss()
}
criterion = criterions[args.loss].cuda()
optimizers = {
"mobius": geoopt.optim.RiemannianAdam,
"hyplinear": torch.optim.Adam,
"linear": torch.optim.Adam,
}
optimizer = optimizers[args.model](
model.parameters(),
lr = args.learning_rate
)
scheduler = None
if scheduler_on:
scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, step_size=args.step_size, gamma=args.gamma
)
#####################EXPERIMENT######################
show_progress = args.show_progress
for epoch in range(args.epochs):
losses = train(train_loader, model, optimizer, criterion,
masked_loss=masked_loss, show_progress=show_progress)
scores = evaluate(infer_loader,eval_data,
model, show_progress=show_progress)
scores.update({'loss': np.mean(losses)})
# wandb.log(scores)
report_metrics(scores, epoch)