-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprepare_nn_era_centered.py
34 lines (27 loc) · 1002 Bytes
/
prepare_nn_era_centered.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy
import xarray
n_regress_days = 29
half_regress_days = 14
n_years_total = 43
n_years_training = 43
n_days = 275
n_pcs = 2
D = 1190
year0 = 1950
anomalies = xarray.open_dataarray('data/era5_anomalies.nc')
x = anomalies.sel(time=anomalies.time.dt.year <= 1992).stack(stacked=['lat', 'lon']).values
x = x.reshape(n_years_total, n_days, D)
pcs = xarray.open_dataset('data/pcs.h5')["pcs"].values.T
pcs = pcs.reshape(107, n_days, n_pcs)
n_samples = n_years_training*(n_days - 122)
x_new = numpy.zeros((n_samples, n_regress_days, D))
pcs_new = numpy.zeros((n_samples, n_pcs))
k = 0
for year in range(year0, year0 + n_years_training):
for j in range(61, n_days - 61):
x_new[k, :, :] = x[year-year0, j-half_regress_days:j+half_regress_days+1, :]
pcs_new[k, :] = pcs[year-year0+49, j, :]
k += 1
x_new = numpy.reshape(x_new, (n_samples, -1))
xarray.DataArray(x_new).to_netcdf("data/x_training_era.nc")
xarray.DataArray(pcs_new).to_netcdf("data/pcs_training_era.nc")